< BioMath

Mathematische Operatoren & Funktionen

by Woche 2

Python ermdglicht alle grundlegenden mathematischen Berechnungen, die auch auf
einem Taschenrechner durchgefiihrt werden kénnen, mit einer Syntax', die einem z.B.
durch Microsoft Excel zumindest teilweise gelaufig ist.

Symbolische Operatoren

Die Operatoren fir Addition, Subtraktion, Multiplikation und Division sind
erwartungsgeman:

10 + 3
13

10 - 3

10 * 3
30
10 / 3

3.3333333333333335
Flr die Potenzierung wird ** genutzt:

10 ** 3

1000

'Syntax ist ein Satz von Regeln, die festlegen, wie Code geschrieben werden muss, damit der
Computer ihn verstehen kann. Es ist wie die Grammatik fir Computercode.

) BioMath

Mathematische Ausdrticke in Python folgen der normalen arithmetischen Reihenfolge
der Operationen, also

1. * ok

2. *und /
3. +und -

Es kdnnen aber Klammern eingesetzt werden um eine andere Reihenfolge zu erreichen:

1+ 2 %3 %2
19
((1 +2) * 3) ** 2

81

Der Vollstandigkeit halber soll erwahnt sein, dass es weitere, nicht so gangige
Operatoren gibt. Beispielsweise wird mit // erst dividiert und dann der Quotient auf die
nachste ganze Zahl abgerundet, sodass 10 // 3 = 3. Mit dem Modulus-Operator %
hingegen wird der Rest, der bei der Division zweier Zahlen entsteht, zurickgegeben,
sodass 10 % 4 = 2.

Funktionen

Funktionen in Python, ahnlich wie in Excel, sind vordefinierte Operationen, die
bestimmte Aufgaben ausfiihren und dabei oft Eingaben (Argumente) bendtigen. Die
Syntax einer Funktion besteht aus ihrem Namen, gefolgt von Klammern, in denen die
Argumente Ubergeben werden.

Erstes Beispiel sei die round() Funktion, welche in Basis-Python enthalten ist und mit
der Zahlen standardmafig auf die nachste ganze Zahl gerundet werden kénnen. Man
Ubergibt also eine Zahl als Argument und erhalt die gerundete Zahl zuriick. Die Funktion
erlaubt aber auch ein zweites Argument, um auf eine bestimmte Dezimalstelle zu
runden. Gibt man kein zweites Argument vor, so wird der entsprechende default-Wert
verwendet, was in diesem Fall zu keiner Nachkommastelle fiihrt.

round(123.456)

123

2/8

) BioMath

round(123.456, 2)

123.46

1 Hinweis

Flgt man eine Raute # in den Code ein, so wird alles, was in derselben Zeile danach
kommt, als Kommentar interpretiert und nicht ausgefuhrt. Kommentare sind
demnach sozusagen nur fur Menschen und nicht fur den Computer. Kommentare
sind eine Moglichkeit, um den Code zu dokumentieren, Ubersichtlicher zu machen
und zu erklaren, was er tut.

Da wir Jupyter Notebooks inklusive Markdown-Zellen verwenden, kann argumentiert
werden, dass diese #-Kommentare innerhalb des Codes weniger nitzlich sind.
Nichtsdestotrotz kénnen sie eine gute Erganzung sein. Auflerdem muss auch klar
sein, dass nicht alle Python-Programmierer eine Jupyter-Umgebung verwenden und
demnach nur ggf. #-Kommentare und eben keine Markdown-Kommentare
verwenden kénnen.

Zwar kénnen wir Argumente wie oben gezeigt einfach in der richtigen Reihenfolge
getrennt durch Kommas Uibergeben, tatsachlich hat jedes Argument aber auch einen
Namen, der in der Funktionssignatur definiert ist. Um die Argumentnamen einer Funktion
in Erfahrung zu bringen, kann die Funktion help() verwendet werden:

help(round)

Help on built-in function round in module builtins:

round (number, ndigits=None)
Round a number to a given precision in decimal digits.

The return value is an integer if ndigits is omitted or None. Otherwise
the return value has the same type as the number. ndigits may be
negative.

Das erste Argument heil3t demnach number und das zweite ndigits. Wir kdnnen auch die
Argumentnamen explizit angeben. Dies macht zum Einen den Code ggf. besser lesbar,
zum Anderen kénnen wir die Argumente dann auch in beliebiger Reihenfolge
Ubergeben. Anders ausgedrickt: Nur wenn wir die Argumente explizit benennen, kdnnen
wir sie in beliebiger Reihenfolge Gbergeben. Geben wir keine Argumentnamen an, so

3/8

mussen wir die Argumente in der Reihenfolge Ubergeben, in der sie in der
Funktionssignatur definiert sind.

SchlieRlich sei noch erwahnt, dass auch eine negative Zahl an ndigits Ubergeben

werden, um auf eine 10er-Stelle zu runden:

round(123.456, -1)

120.0

round(ndigits = -1, number = 123.456)

120.0

Selbstverstandlich ist es auch mdglich z.B. den Logarithmus einer Zahl zu berechnet.
Allerdings gibt es dafir keine direkt verfligbare Funktion, sondern wir miissen auf ein
Modul zurtickgreifen, das diese Funktion enthalt. Diese und andere Funktionen sind im
Standardmodul math enthalten, sodass wir dieses zwar nicht installieren, wohl aber
zunachst laden missen.

import math

Erst nachdem wir diesen Code zum laden des Moduls haben laufen lassen, kbnnen wir
die Funktion math.log() verwenden, um den Logarithmus einer Zahl zu berechnen.
Demnach missen wir hier das Modul math voranstellen und mit einem . mit der
eigentlichen Funktion log() verbinden.

1 Hinweis

Fur besseren Lesefluss wird hier vorerst nicht detaillierter auf Module eingangen.
Eine detailliertere Einfihrung kommt in einem spateren Kapitel.

Standardmalig wird der natiirliche Logarithmus von 100 berechnet, wobei die Basis des
Logarithmus die Euler’'sche Zahl e (= 2,718) ist. Es kann aber auch der Logarithmus zu
einer beliebigen Basis berechnet werden, solange die als zweites Argument in der
Funktion angegeben wird:

math.log(100)

) BioMath

4/8

https://www.wikiwand.com/de/Eulersche_Zahl

) BioMath

4.605170185988092

math.log(100, 10)

2.0

Analog kann auch die Exponentialfunktion (e*) berechnet werden, wobei e wieder die
Euler’'sche Zahl ist. SchlieBlich kann auch die Quadratwurzel \/Zx) gezogen werden:

math.exp(10)
22026.465794806718
math.sqrt(9)

3.0

Es konnen auch math.ceil() und math.floor() verwendet werden, um immer auf- bzw.
abzurunden.

math.ceil(123.456)

124

math.floor(123.456)

123

Module

Wie gerade gesehen, sind nicht alle Funktionen in Python direkt verfugbar. Stattdessen
haben wir uns gerade einige zusatzliche Funktionen verfligbar gemacht, indem wir das

math-Modul geladen haben. Module sind Sammlungen von Funktionen und Klassen, die
in Python-Dateien gespeichert sind. Das math Modul ist dabei in der Python Standard

5/8

https://docs.python.org/3/library/

) BioMath

Library enthalten, also direkt nach Installation von Python verfligbar - muss aber eben
noch geladen bzw. aktiviert werden.

Darlber hinaus gibt es viele Module, die von Dritten erstellt wurden und einmalig
installiert werden missen, bevor sie geladen und verwendet werden kdnnen. Die
Installation solcher Module erfolgt dabei z.B. tiber den Befehl pip install (siehe Python
Package Index (PyPl); spater mehr). Eigentlich gehdren viele der Module, die wir in
diesem Kurs verwenden werden, zu diesen sogenannten Third-Party-Modulen, sodass
wir sie erst installieren missten. Da wir aber Python via Anaconda verwenden, sind viele
dieser Module bereits installiert und kénnen direkt verwendet werden.

Es sei noch erwahnt, dass statt “Modul” in diesem Kontext auch Begriffe wie “Bibliothek”
oder “Paket/Package” verwendet werden. Diese Begriffe sind mehr oder weniger
Synonyme, wobei “Modul” eher fiir einzelne Dateien steht, “Bibliothek” fiir eine
Sammlung von Modulen und “Paket/Package” fir eine Sammlung von Bibliotheken. So
ist z.B. pandas ein einzelnes Modul, wohingegen scikit-learn eine Bibliothek/ein Paket
aus mehreren Modulen ist.

Importieren von Modulen

Oben ist flr math eine gangige Art gezeigt, ein Modul zu laden und dessen Funktionen
zu nutzen. Hier sind alle Moéglichkeiten, wie ein Modul geladen werden kann:

Option 1

Modul mit import laden und Funktion mittels Punkt-Notation nutzen.

import math

math.sqrt(9 + math.pi)

3.4844788209414896

Option 2

Modul mit import und as unter einem anderen Namen (Alias) laden und Funktion mittels
Punkt-Notation nutzen.

import math as m

m.sqrt(9 + m.pi)

3.4844788209414896

Option 3a

6/8

https://docs.python.org/3/library/
https://pypi.org/
https://pypi.org/

) BioMath

Spezifische Funktion aus Modul via from und import laden und direkt nutzen. Option a:
Funktionsnamen in einer Zeile durch Kommas getrennt.

from math import sqrt, pi

sqrt(9 + pi)

3.4844788209414896

Option 3b

Spezifische Funktion aus Modul via from und import laden und direkt nutzen. Option b:
Ein Funktionsname je Zeile durch Kommas getrennt und in Klammern.

from math import (sqrt,

pi)
sqrt(9 + pi)

3.4844788209414896

Option 4

Alle Funktionen aus Modul via from und import * laden und direkt nutzen.

from math import *

sqrt(9 + pi)

3.4844788209414896

7/8

1 Hinweis

Optionen 1 und 2 sind die gangigsten und empfohlenen, da sie zwar mehr Code
bendtigen, daflir aber stets klar ist, welche Funktionen aus welchem Modul
stammen. Das ist nicht nur fir die Menschen nachvollziehbarer, sondern vermeidet
dartber hinaus noch sogenannte Namenskonflikte. Ein Namenskonflikt tritt auf,
wenn zwei der geladenen Module (zufalligerweise) Funktionen mit demselben
Namen haben. In diesem Fall wirde Python automatisch die Funktion des zuletzt
geladenen Moduls verwenden, was zu unerwarteten Ergebnissen fiihren kann.

Darlber hinaus sind sogar die Aliase (Option 2) fur bestimmte Module so gangig,
dass sie in der Python-Community als “Standard” gelten. So wird z.B. import pandas
as pd und import numpy as np so haufig verwendet, dass es fast schon
ungewodhnlich ware, es nicht zu tun.

© Weitere Ressourcen

* What are Python modules? nur bis 3:53!
* Please NEVER Do THIS In Python :(

Ubungen

Was ergibt round(111, -1)

(A) -1
(B) 110
(C) 111.0

Was ergibt round(-1, 111)

(A) -1
(B) 110
(C) 111.0

Welcher dieser Befehle fuhrt nicht zu dem gleichen Ergebnis der anderen drei?

(A) round(1, 1.33)
(B) round(ndigits=1, number=1.33)
(C) round(1.33, 1)
(D) round(number=1.33, ndigits=1)

) BioMath

8/8

https://youtu.be/XcfxkHrHTVE?si=QWink9LOEkAiKtyX
https://youtube.com/shorts/8eiaM85c_iI?si=6JyQTVfz18TLHYR7

	Symbolische Operatoren
	Funktionen
	Module
	Importieren von Modulen

	Übungen

