
1 / 8

Mathematische Operatoren & Funktionen
by Woche 2

Python ermöglicht alle grundlegenden mathematischen Berechnungen, die auch auf
einem Taschenrechner durchgeführt werden können, mit einer Syntax¹, die einem z.B.
durch Microsoft Excel zumindest teilweise geläufig ist.

Symbolische Operatoren
Die Operatoren für Addition, Subtraktion, Multiplikation und Division sind
erwartungsgemäß:

10 + 3

13

10 - 3

7

10 * 3

30

10 / 3

3.3333333333333335

Für die Potenzierung wird ** genutzt:

10 ** 3

1000

¹Syntax ist ein Satz von Regeln, die festlegen, wie Code geschrieben werden muss, damit der
Computer ihn verstehen kann. Es ist wie die Grammatik für Computercode.

1

2 / 8

Mathematische Ausdrücke in Python folgen der normalen arithmetischen Reihenfolge
der Operationen, also

1. **

2. * und /
3. + und -

Es können aber Klammern eingesetzt werden um eine andere Reihenfolge zu erreichen:

1 + 2 * 3 ** 2

19

((1 + 2) * 3) ** 2

81

Der Vollständigkeit halber soll erwähnt sein, dass es weitere, nicht so gängige
Operatoren gibt. Beispielsweise wird mit // erst dividiert und dann der Quotient auf die
nächste ganze Zahl abgerundet, sodass 10 // 3 = 3. Mit dem Modulus-Operator %
hingegen wird der Rest, der bei der Division zweier Zahlen entsteht, zurückgegeben,
sodass 10 % 4 = 2.

Funktionen
Funktionen in Python, ähnlich wie in Excel, sind vordefinierte Operationen, die
bestimmte Aufgaben ausführen und dabei oft Eingaben (Argumente) benötigen. Die
Syntax einer Funktion besteht aus ihrem Namen, gefolgt von Klammern, in denen die
Argumente übergeben werden.

Erstes Beispiel sei die round() Funktion, welche in Basis-Python enthalten ist und mit
der Zahlen standardmäßig auf die nächste ganze Zahl gerundet werden können. Man
übergibt also eine Zahl als Argument und erhält die gerundete Zahl zurück. Die Funktion
erlaubt aber auch ein zweites Argument, um auf eine bestimmte Dezimalstelle zu
runden. Gibt man kein zweites Argument vor, so wird der entsprechende default-Wert
verwendet, was in diesem Fall zu keiner Nachkommastelle führt.

keine Nachkommastelle
round(123.456)

123

2

3 / 8

zwei Nachkommastellen
round(123.456, 2)

123.46

 Hinweis

Fügt man eine Raute # in den Code ein, so wird alles, was in derselben Zeile danach
kommt, als Kommentar interpretiert und nicht ausgeführt. Kommentare sind
demnach sozusagen nur für Menschen und nicht für den Computer. Kommentare
sind eine Möglichkeit, um den Code zu dokumentieren, übersichtlicher zu machen
und zu erklären, was er tut.

Da wir Jupyter Notebooks inklusive Markdown-Zellen verwenden, kann argumentiert
werden, dass diese #-Kommentare innerhalb des Codes weniger nützlich sind.
Nichtsdestotrotz können sie eine gute Ergänzung sein. Außerdem muss auch klar
sein, dass nicht alle Python-Programmierer eine Jupyter-Umgebung verwenden und
demnach nur ggf. #-Kommentare und eben keine Markdown-Kommentare
verwenden können.

Zwar können wir Argumente wie oben gezeigt einfach in der richtigen Reihenfolge
getrennt durch Kommas übergeben, tatsächlich hat jedes Argument aber auch einen
Namen, der in der Funktionssignatur definiert ist. Um die Argumentnamen einer Funktion
in Erfahrung zu bringen, kann die Funktion help() verwendet werden:

help(round)

Help on built-in function round in module builtins:

round(number, ndigits=None)
 Round a number to a given precision in decimal digits.

 The return value is an integer if ndigits is omitted or None. Otherwise
 the return value has the same type as the number. ndigits may be
negative.

Das erste Argument heißt demnach number und das zweite ndigits. Wir können auch die
Argumentnamen explizit angeben. Dies macht zum Einen den Code ggf. besser lesbar,
zum Anderen können wir die Argumente dann auch in beliebiger Reihenfolge
übergeben. Anders ausgedrückt: Nur wenn wir die Argumente explizit benennen, können
wir sie in beliebiger Reihenfolge übergeben. Geben wir keine Argumentnamen an, so

3

4 / 8

müssen wir die Argumente in der Reihenfolge übergeben, in der sie in der
Funktionssignatur definiert sind.

Schließlich sei noch erwähnt, dass auch eine negative Zahl an ndigits übergeben
werden, um auf eine 10er-Stelle zu runden:

round(123.456, -1)

120.0

round(ndigits = -1, number = 123.456)

120.0

Selbstverständlich ist es auch möglich z.B. den Logarithmus einer Zahl zu berechnet.
Allerdings gibt es dafür keine direkt verfügbare Funktion, sondern wir müssen auf ein
Modul zurückgreifen, das diese Funktion enthält. Diese und andere Funktionen sind im
Standardmodul math enthalten, sodass wir dieses zwar nicht installieren, wohl aber
zunächst laden müssen.

import math # Das math-Modul laden

Erst nachdem wir diesen Code zum laden des Moduls haben laufen lassen, können wir
die Funktion math.log() verwenden, um den Logarithmus einer Zahl zu berechnen.
Demnach müssen wir hier das Modul math voranstellen und mit einem . mit der
eigentlichen Funktion log() verbinden.

 Hinweis

Für besseren Lesefluss wird hier vorerst nicht detaillierter auf Module eingangen.
Eine detailliertere Einführung kommt in einem späteren Kapitel.

Standardmäßig wird der natürliche Logarithmus von 100 berechnet, wobei die Basis des
Logarithmus die Euler’sche Zahl 𝑒 (≈ 2,718) ist. Es kann aber auch der Logarithmus zu
einer beliebigen Basis berechnet werden, solange die als zweites Argument in der
Funktion angegeben wird:

Logarithmus zur Basis e
math.log(100)

4

https://www.wikiwand.com/de/Eulersche_Zahl

5 / 8

4.605170185988092

Logarithmus zur Basis 10
math.log(100, 10)

2.0

Analog kann auch die Exponentialfunktion (𝑒𝑥) berechnet werden, wobei 𝑒 wieder die
Euler’sche Zahl ist. Schließlich kann auch die Quadratwurzel √(𝑥) gezogen werden:

math.exp(10)

22026.465794806718

math.sqrt(9)

3.0

Es können auch math.ceil() und math.floor() verwendet werden, um immer auf- bzw.
abzurunden.

Aufrunden
math.ceil(123.456)

124

Abrunden
math.floor(123.456)

123

Module
Wie gerade gesehen, sind nicht alle Funktionen in Python direkt verfügbar. Stattdessen
haben wir uns gerade einige zusätzliche Funktionen verfügbar gemacht, indem wir das
math-Modul geladen haben. Module sind Sammlungen von Funktionen und Klassen, die
in Python-Dateien gespeichert sind. Das math Modul ist dabei in der Python Standard

5

https://docs.python.org/3/library/

6 / 8

Library enthalten, also direkt nach Installation von Python verfügbar - muss aber eben
noch geladen bzw. aktiviert werden.

Darüber hinaus gibt es viele Module, die von Dritten erstellt wurden und einmalig
installiert werden müssen, bevor sie geladen und verwendet werden können. Die
Installation solcher Module erfolgt dabei z.B. über den Befehl pip install (siehe Python
Package Index (PyPI); später mehr). Eigentlich gehören viele der Module, die wir in
diesem Kurs verwenden werden, zu diesen sogenannten Third-Party-Modulen, sodass
wir sie erst installieren müssten. Da wir aber Python via Anaconda verwenden, sind viele
dieser Module bereits installiert und können direkt verwendet werden.

Es sei noch erwähnt, dass statt “Modul” in diesem Kontext auch Begriffe wie “Bibliothek”
oder “Paket/Package” verwendet werden. Diese Begriffe sind mehr oder weniger
Synonyme, wobei “Modul” eher für einzelne Dateien steht, “Bibliothek” für eine
Sammlung von Modulen und “Paket/Package” für eine Sammlung von Bibliotheken. So
ist z.B. pandas ein einzelnes Modul, wohingegen scikit-learn eine Bibliothek/ein Paket
aus mehreren Modulen ist.

Importieren von Modulen
Oben ist für math eine gängige Art gezeigt, ein Modul zu laden und dessen Funktionen
zu nutzen. Hier sind alle Möglichkeiten, wie ein Modul geladen werden kann:

Option 1

Modul mit import laden und Funktion mittels Punkt-Notation nutzen.

import math

math.sqrt(9 + math.pi)

3.4844788209414896

Option 2

Modul mit import und as unter einem anderen Namen (Alias) laden und Funktion mittels
Punkt-Notation nutzen.

import math as m

m.sqrt(9 + m.pi)

3.4844788209414896

Option 3a

6

https://docs.python.org/3/library/
https://pypi.org/
https://pypi.org/

7 / 8

Spezifische Funktion aus Modul via from und import laden und direkt nutzen. Option a:
Funktionsnamen in einer Zeile durch Kommas getrennt.

from math import sqrt, pi

sqrt(9 + pi)

3.4844788209414896

Option 3b

Spezifische Funktion aus Modul via from und import laden und direkt nutzen. Option b:
Ein Funktionsname je Zeile durch Kommas getrennt und in Klammern.

from math import (sqrt,
 pi)
sqrt(9 + pi)

3.4844788209414896

Option 4

Alle Funktionen aus Modul via from und import * laden und direkt nutzen.

from math import *

sqrt(9 + pi)

3.4844788209414896

7

8 / 8

 Hinweis

Optionen 1 und 2 sind die gängigsten und empfohlenen, da sie zwar mehr Code
benötigen, dafür aber stets klar ist, welche Funktionen aus welchem Modul
stammen. Das ist nicht nur für die Menschen nachvollziehbarer, sondern vermeidet
darüber hinaus noch sogenannte Namenskonflikte. Ein Namenskonflikt tritt auf,
wenn zwei der geladenen Module (zufälligerweise) Funktionen mit demselben
Namen haben. In diesem Fall würde Python automatisch die Funktion des zuletzt
geladenen Moduls verwenden, was zu unerwarteten Ergebnissen führen kann.

Darüber hinaus sind sogar die Aliase (Option 2) für bestimmte Module so gängig,
dass sie in der Python-Community als “Standard” gelten. So wird z.B. import pandas
as pd und import numpy as np so häufig verwendet, dass es fast schon
ungewöhnlich wäre, es nicht zu tun.

 Weitere Ressourcen

• What are Python modules? nur bis 3:53!
• Please NEVER Do THIS In Python :(

Übungen
Was ergibt round(111, −1)

• (A) −1
• (B) 110
• (C) 111.0

Was ergibt round(-1, 111)

• (A) −1
• (B) 110
• (C) 111.0

Welcher dieser Befehle führt nicht zu dem gleichen Ergebnis der anderen drei?

• (A) round(1, 1.33)
• (B) round(ndigits=1, number=1.33)
• (C) round(1.33, 1)
• (D) round(number=1.33, ndigits=1)

8

https://youtu.be/XcfxkHrHTVE?si=QWink9LOEkAiKtyX
https://youtube.com/shorts/8eiaM85c_iI?si=6JyQTVfz18TLHYR7

	Symbolische Operatoren
	Funktionen
	Module
	Importieren von Modulen

	Übungen

