
1 / 6

Grundlegende Datentypen
by Woche 2

Zahlen sind nur einer von vielen grundlegenden Datentypen, auf die man in Python
stößt, insbesondere wenn man Datenanalysen durchführt. Ein fundiertes Verständnis
dieser grundlegenden Datentypen ist entscheidend, um mit Daten in Python zu arbeiten.

Integer (Ganze Zahlen)
Integers (kurz “ints”; Ganze Zahlen), sind numerische Werte ohne Dezimalstellen (siehe
Wiki). Jede positive oder negative Zahl (oder 0) ohne Dezimalstelle ist ein Integer in
Python. Integers haben eine unbegrenzte Genauigkeit, was bedeutet, dass sie exakt
sind. Mit der Funktion type() kann der Typ eines Python-Objekts überprüft werden:

type(12)

int

Wie man sieht, ist der Typ von 12 “int”. Man kann auch die Funktion isinstance()
verwenden, um zu überprüfen, ob ein Objekt eine Instanz eines bestimmten Typs ist:

isinstance(12, int) # Überprüfen, ob 12 vom Typ "int" ist

True

Der Code bestätigt, dass 12 ein Integer (int) ist.

Integer unterstützen alle grundlegenden mathematischen Operationen aus dem letzten
Kapitel. Wenn eine mathematische Operation mit Integer zu einem Ergebnis führt, das
kein Integer ist, sondern ein Dezimalwert, wird das Ergebnis zu einem Float:

1/3

0.3333333333333333

type(1/3)

float

1

https://www.wikiwand.com/de/Ganze_Zahl
https://www.wikiwand.com/de/Ganze_Zahl

2 / 6

Floats (Gleitkommazahlen)
Floats (floating point number; Gleitkommazahlen) sind Zahlen mit Dezimalstellen (siehe
Wiki). Im Gegensatz zu Integer haben Floats keine unbegrenzte Genauigkeit, da
irrationale Dezimalzahlen unendlich lang sind und daher nicht im Speicher abgelegt
werden können. Stattdessen wird der Wert langer Dezimalstellen vom Computer
angenähert, sodass es bei langen Floats zu kleinen Rundungsfehlern kommen kann.
Dieser Fehler ist so gering, dass er normalerweise nicht von Bedeutung ist, kann sich
jedoch in bestimmten Fällen bei vielen wiederholten Berechnungen summieren.

Jede Zahl in Python mit einem Dezimalpunkt ist ein Float, auch wenn nach dem
Dezimalpunkt keine von null verschiedenen Zahlen stehen:

type(1.0)

float

isinstance(0.33333, float)

True

Die in der letzten Lektion gelernten Rechenoperationen funktionieren sowohl bei Floats
als auch bei Ints. Werden sowohl Floats als auch Ints im selben mathematischen
Ausdruck verwendet, ist das Ergebnis ein Float. Ein Float kann mit der Funktion int() in
ein Integer umgewandelt werden. Mit der Funktion float() kann ein Integer in einen
Float umgewandelt werden.

5 + 1.0 # Int + Float = Float

6.0

int(6.0)

6

float(6)

6.0

2

https://www.wikiwand.com/de/Gleitkommazahl
https://www.wikiwand.com/de/Gleitkommazahl

3 / 6

Floats können auch einige spezielle Werte annehmen: Inf, -Inf und NaN. Inf und -Inf
stehen für Unendlichkeit und negative Unendlichkeit, und NaN steht für “not a number”
und wird manchmal als Platzhalter für fehlende oder fehlerhafte numerische Werte
verwendet.

type(float("Inf"))

float

type(float("NaN"))

float

Anmerkung: Python enthält einen dritten, seltenen numerischen Datentyp “complex”, der
zur Speicherung von komplexen Zahlen verwendet wird.

Booleans
Booleans (“bools”) repräsentieren in Python Wahrheitswerte, die entweder True oder
False sein können (siehe Wiki). Diese Werte können direkt zugewiesen oder durch den
Ausgang logischer Ausdrücke und Vergleiche erzeugt werden. In Python beginnen
booleans mit einem Großbuchstaben, sodass True und False als bools erkannt werden,
“true” und “false” jedoch nicht. Ein Beispiel für booleans wurde bereits gesehen, als die
Funktion isinstance() oben verwendet wurde.

type(True)

bool

isinstance(False, bool) # Überprüfung, ob False vom Typ bool ist

True

Boolesche Werte können mit logischen Ausdrücken erzeugt werden. Python unterstützt
alle standardmäßigen logischen Operatoren, die man erwarten würde:

20 > 10 # > für größer als

True

3

https://www.wikiwand.com/de/Boolean

4 / 6

20 < 5 # < für kleiner als

False

20 >= 20 # >= und <= für größer oder gleich und kleiner oder gleich

True

10 == 10 # Verwendung von == (zwei aufeinanderfolgende Gleichheitszeichen), um
auf Gleichheit zu überprüfen

True

40 == 40.0 # Äquivalente ints und floats gelten als gleich

True

1 != 2 # != um auf Ungleichheit zu überprüfen; "nicht gleich"

True

not False # Das Schlüsselwort "not" für die Negation verwenden

True

(2 > 1) and (10 > 11) # "and" für logisches Und verwenden

False

(2 > 1) or (10 > 11) # "or" für logisches Oder verwenden

True

Ähnlich wie bei mathematischen Ausdrücken haben logische Ausdrücke eine festgelegte
Reihenfolge der Operationen. In einer logischen Aussage werden Vergleiche wie >, <
und == zuerst ausgeführt, gefolgt von not, dann and und schließlich or (siehe Details).
Ein logisches Und (and) bewertet zwei Aussagen als wahr, wenn beide wahr sind,

4

https://docs.python.org/3/reference/expressions.html#operator-precedence

5 / 6

während ein logisches Oder (or) wahr ist, wenn mindestens eine der beiden Aussagen
wahr ist.

Klammern werden verwendet, um die gewünschte Reihenfolge der Operationen zu
erzwingen.

2 > 1 or 10 < 8 and not True

True

((2 > 1) or (10 < 8)) and (not True)

False

Zahlen können mit der Funktion bool() in boolesche Werte umgewandelt werden. Alle
Zahlen außer 0 werden zu True konvertiert:

bool(1)

True

bool(0)

False

Strings
Textdaten in Python werden als String oder str bezeichnet. Um einen String zu
erstellen, umgibt man den Text mit einfachen oder doppelten Anführungszeichen:

type("cat")

str

type('1')

str

5

6 / 6

Zwei Anführungszeichen direkt nebeneinander (wie '' oder "") ohne etwas dazwischen
werden als der leere String bezeichnet. Der leere String stellt oft einen fehlenden
Textwert dar.

Während numerische Daten und logische Daten im Allgemeinen gut handhabbar sind,
können Textdaten sehr unordentlich und schwer zu bearbeiten sein. Das Säubern von
Textdaten ist oft einer der mühsamsten Schritte bei der Vorbereitung von echten
Datensätzen für die Analyse. In zukünftigen Lektionen wird erneut auf Strings und
Funktionen eingegangen, um beim Säubern von Textdaten zu helfen.

None
In Python stellt None einen speziellen Datentyp dar, der häufig verwendet wird, um einen
fehlenden Wert zu repräsentieren. Beispielsweise wird, wenn eine Funktion definiert
wird, die nichts zurückgibt (keinen Ergebniswert liefert), standardmäßig None
zurückgegeben.

type(None)

NoneType

6

	Integer (Ganze Zahlen)
	Floats (Gleitkommazahlen)
	Booleans
	Strings
	None

