< BioMath

Grundlegende Datentypen

by Woche 2

Zahlen sind nur einer von vielen grundlegenden Datentypen, auf die man in Python
stolt, insbesondere wenn man Datenanalysen durchfiihrt. Ein fundiertes Verstandnis
dieser grundlegenden Datentypen ist entscheidend, um mit Daten in Python zu arbeiten.

Integer (Ganze Zahlen)

Integers (kurz “ints”; Ganze Zahlen), sind numerische Werte ohne Dezimalstellen (siehe
Wiki). Jede positive oder negative Zahl (oder 0) ohne Dezimalstelle ist ein Integer in
Python. Integers haben eine unbegrenzte Genauigkeit, was bedeutet, dass sie exakt
sind. Mit der Funktion type () kann der Typ eines Python-Objekts Gberprift werden:

type(12)
int

Wie man sieht, ist der Typ von 12 “int”. Man kann auch die Funktion isinstance()
verwenden, um zu Uberprifen, ob ein Objekt eine Instanz eines bestimmten Typs ist:

isinstance(12, int) # Uberprifen, ob 12 vom Typ "int" ist

True

Der Code bestatigt, dass 12 ein Integer (int) ist.

Integer unterstitzen alle grundlegenden mathematischen Operationen aus dem letzten
Kapitel. Wenn eine mathematische Operation mit Integer zu einem Ergebnis fihrt, das
kein Integer ist, sondern ein Dezimalwert, wird das Ergebnis zu einem Float:

1/3
0.3333333333333333

type(1/3)

float


https://www.wikiwand.com/de/Ganze_Zahl
https://www.wikiwand.com/de/Ganze_Zahl

) BioMath

Floats (Gleitkommazahlen)

Floats (floating point number; Gleitkommazahlen) sind Zahlen mit Dezimalstellen (siehe
Wiki). Im Gegensatz zu Integer haben Floats keine unbegrenzte Genauigkeit, da
irrationale Dezimalzahlen unendlich lang sind und daher nicht im Speicher abgelegt
werden koénnen. Stattdessen wird der Wert langer Dezimalstellen vom Computer
angenahert, sodass es bei langen Floats zu kleinen Rundungsfehlern kommen kann.
Dieser Fehler ist so gering, dass er normalerweise nicht von Bedeutung ist, kann sich
jedoch in bestimmten Fallen bei vielen wiederholten Berechnungen summieren.

Jede Zahl in Python mit einem Dezimalpunkt ist ein Float, auch wenn nach dem
Dezimalpunkt keine von null verschiedenen Zahlen stehen:

type(1.0)
float
isinstance(0.33333, float)

True

Die in der letzten Lektion gelernten Rechenoperationen funktionieren sowohl bei Floats
als auch bei Ints. Werden sowohl Floats als auch Ints im selben mathematischen
Ausdruck verwendet, ist das Ergebnis ein Float. Ein Float kann mit der Funktion int() in
ein Integer umgewandelt werden. Mit der Funktion float() kann ein Integer in einen
Float umgewandelt werden.

5+ 1.0

6.0

int(6.0)

float(6)

6.0

2/6


https://www.wikiwand.com/de/Gleitkommazahl
https://www.wikiwand.com/de/Gleitkommazahl

) BioMath

Floats kbnnen auch einige spezielle Werte annehmen: Inf, -Inf und NaN. Inf und -Inf
stehen fur Unendlichkeit und negative Unendlichkeit, und NaN steht fir “not a number”
und wird manchmal als Platzhalter fir fehlende oder fehlerhafte numerische Werte
verwendet.

type(float("Inf"))

float

type(float("NaN"))

float

Anmerkung: Python enthalt einen dritten, seltenen numerischen Datentyp “complex”, der
zur Speicherung von komplexen Zahlen verwendet wird.

Booleans

Booleans (“bools”) reprasentieren in Python Wahrheitswerte, die entweder True oder
False sein kdnnen (siehe Wiki). Diese Werte kdnnen direkt zugewiesen oder durch den
Ausgang logischer Ausdriicke und Vergleiche erzeugt werden. In Python beginnen
booleans mit einem GroRbuchstaben, sodass True und False als bools erkannt werden,
“true” und “false” jedoch nicht. Ein Beispiel fur booleans wurde bereits gesehen, als die
Funktion isinstance() oben verwendet wurde.

type(True)

bool

isinstance(False, bool)

True

Boolesche Werte kdnnen mit logischen Ausdricken erzeugt werden. Python unterstitzt
alle standardmaligen logischen Operatoren, die man erwarten wirde:

20 > 10

True

3/6


https://www.wikiwand.com/de/Boolean

20 < 5 # < fur kleiner als

False

20 >= 20 # >= und <= fir groBer oder gleich und kleiner oder gleich

True

10 == 10 # Verwendung von == (zwei aufeinanderfolgende Gleichheitszeichen), um

auf Gleichheit zu Uberprifen

True

40 == 40.0 # Aquivalente ints und floats gelten als gleich

True

1 !'=2 # != um auf Ungleichheit zu uberprifen; "nicht gleich"

True

not False # Das Schlusselwort "not" fir die Negation verwenden

True

(2 > 1) and (10 > 11) # "and" fir logisches Und verwenden

False

(2 > 1) or (10 > 11) # "or" fur logisches Oder verwenden

True

Ahnlich wie bei mathematischen Ausdriicken haben logische Ausdriicke eine festgelegte
Reihenfolge der Operationen. In einer logischen Aussage werden Vergleiche wie >, <
und == zuerst ausgefihrt, gefolgt von not, dann and und schliefllich or (siehe Details).

Ein logisches Und (and) bewertet zwei Aussagen als wahr, wenn beide wahr sind,

< BioMath

4/6


https://docs.python.org/3/reference/expressions.html#operator-precedence

) BioMath

wahrend ein logisches Oder (or) wahr ist, wenn mindestens eine der beiden Aussagen
wahr ist.

Klammern werden verwendet, um die gewlinschte Reihenfolge der Operationen zu
erzwingen.

2>1o0or 10 < 8 and not True

True

((2 > 1) or (10 < 8)) and (not True)

False

Zahlen kdénnen mit der Funktion bool() in boolesche Werte umgewandelt werden. Alle
Zahlen aul3er 0 werden zu True konvertiert:

bool (1)
True
bool (0)

False

Strings
Textdaten in Python werden als String oder str bezeichnet. Um einen String zu
erstellen, umgibt man den Text mit einfachen oder doppelten Anflihrungszeichen:

type("cat")
str
type('1l')

str

5/6



) BioMath

Zwei Anfuhrungszeichen direkt nebeneinander (wie ' ' oder "") ohne etwas dazwischen
werden als der leere String bezeichnet. Der leere String stellt oft einen fehlenden
Textwert dar.

Wahrend numerische Daten und logische Daten im Allgemeinen gut handhabbar sind,
kénnen Textdaten sehr unordentlich und schwer zu bearbeiten sein. Das Saubern von
Textdaten ist oft einer der mihsamsten Schritte bei der Vorbereitung von echten
Datensatzen fir die Analyse. In zukinftigen Lektionen wird erneut auf Strings und
Funktionen eingegangen, um beim Saubern von Textdaten zu helfen.

None

In Python stellt None einen speziellen Datentyp dar, der haufig verwendet wird, um einen
fehlenden Wert zu reprasentieren. Beispielsweise wird, wenn eine Funktion definiert
wird, die nichts zuriickgibt (keinen Ergebniswert liefert), standardmafig None
zurickgegeben.

type(None)

NoneType

6/6



	Integer (Ganze Zahlen)
	Floats (Gleitkommazahlen)
	Booleans
	Strings
	None

