< BioMath

Variablen

by Woche 2

In diesem Kapitel lernt man, wie man Variablen in Python definiert. Eine Variable ist ein
Name, dem man einen Wert oder ein Objekt zuweist. Nach der Zuweisung einer Variable
kann man auf den zugehérigen Wert oder das Objekt zugreifen, indem man den Namen
der Variable verwendet. Variablen sind eine praktische Moglichkeit, Werte mit sinnvollen
Namen zu speichern.

Variablen zuweisen

In Python weist man Variablen mit = zu:

a=3
print(a)
3

b = '"Etwas Text'
print(b)

Etwas Text

Dabei wird stets erst die ggf. vorhandene Berechnung durchgefihrt und nur das
Ergebnise zugewiesen. Variablennamen in Python missen nicht aus einzelnen
Buchstaben bestehen. Es kdnnen beliebige Kombinationen von Buchstaben und Ziffern
gewahlt werden, solange sie nicht mit einer Ziffer beginnen. Das einzige erlaubte
Sonderzeichen ist der Unterstrich .

a =3
cl23 = a/2 + a
print(cl23)

4.5

Ein_langer name = 5**a
print(Ein_langer name)

1/11

) BioMath

125

Es gibt Méglichkeiten eine Mehrfachzuweisung durchzuflihren:

varl = var2 = 5

print(varl)
print(var2)

var3, var4d = 10, 20

print(var3)
print(var4)

10
20

1 Anmerkung zum print() Befehl

Im interaktiven Modus von Python, beispielsweise in Jupyter-Notebooks, reicht es,
eine Variable einzugeben, um ihren Wert zu sehen (x). Bei normalen Python-Scripts,
die man in einer Umgebung wie Visual Studio Code schreibt und ausfihrt, braucht
man print(x), um dies zu tun. Daher kann es Unterschiede im Umgang mit print ()
geben, je nachdem wo man arbeitet. In dieser Dokumentation wird print() ab hier
nur wenn notig verwendet, um den Code Ubersichtlich zu halten. In der Regel wird es
dann verwendet, wenn mehrere Werte/Texte/etc. nach einem Code Chunk
ausgegeben werden sollen, so wie oben mit var3 und var4.

Methoden

Methoden sind einem Objekt zugeordnete Funktionen in Python, die spezifische
Operationen mit oder auf diesem Objekt ausfiihren. Im Gegensatz zu eigenstandigen
Funktionen, die unabhangig existieren, sind Methoden eng mit den Objekten verbunden,
zu denen sie gehoren, und hangen vom Typ des Objekts ab. Um alle verfligbaren
Methoden eines Objekts zu sehen, kann die Funktion dir() verwendet werden:

var = -5

2/1

) BioMath

dir(var)

[' abs ',
' add ',

__and__‘',
' bool *,
' ceil ',

__class__ ‘',
' delattr ‘',

' dir_ "',

' divmod ‘',

' doc_ ',
‘_eq_ "',

' float ‘',

' floor ',

' floordiv_ ',

' format ',
‘'_ge ',

' getattribute ‘',
' getnewargs ‘',

' getstate ‘',
‘gt "',

' hash_ ',

' dindex ',

__init ',
' init subclass ‘',
' int_ ',

__invert ',
'le Y,
' lshift ',
‘ol Y,
' mod ‘',
' mul_ ',

'_pos_ ',
‘__pow__ ',
' radd_ ‘',
' rand_ ',
' rdivmod ',
' reduce ',

__reduce ex ',
' repr_ ‘',
' rfloordiv_ ',

' rlshift ',

3/11

) BioMath

__rmod ',

' rmul_ ‘',
' ror_ ‘',

' round ',

' rpow_ ‘',

' rrshift ',
' rshift ‘',

' rsub ',

__rtruediv_ ',

' _rxor_ ‘',

__setattr_ ‘',

__sizeof ‘',
' str ',

__sub__ ',
' subclasshook ',
' truediv_ ',

' trunc_ ',

' _xor_ "',
'as_integer ratio',
'bit count',

'bit length',
‘conjugate’,
'denominator’,
‘from bytes',
'imag',

'is integer’,
'numerator’',
'real’,

'to bytes']

Um dartber hinaus Informationen zu Methoden zu erhalten, kann die Funktion help()
verwendet werden:

var = -5

help(var)

Help on int object:

class int(object)
| int([x]) -> integer
int(x, base=10) -> integer

are given. If x is a number, return x. int (). For floating point

I
I
| Convert a number or string to an integer, or return 0 if no arguments
I
| numbers, this truncates towards zero.

4/ 11

If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by '+' or '-' and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.

Base 0 means to interpret the base from the string as an integer literal.

>>> int('0blOO', base=0)
4

Built-in subclasses:
bool

Methods defined here:

__abs_ (self, /)

abs (self)

__add_ (self, value, /)
Return self+value.

__and_ (self, value, /)
Return self&value.

__bool (self, /)
True if self else False

_ceil (...)
Ceiling of an Integral returns itself.

__divmod (self, value, /)
Return divmod(self, value).

__eq__ (self, value, /)
Return self==value.

__float_ (self, /)
float(self)

__floor_ (...)
Flooring an Integral returns itself.

__floordiv__ (self, value, /)
Return self//value.

__format_ (self, format spec, /)
Convert to a string according to format spec.

__ge_ (self, value, /)

) BioMath

5/11

) BioMath

Return self>=value.

__getattribute (self, name, /)
Return getattr(self, name).

__getnewargs (self, /)

gt (self, value, /)
Return self>value.

__hash__ (self, /)
Return hash(self).

__index_ (self, /)
Return self converted to an integer, if self is suitable for use as an
index into a list.

__int (self, /)

int(self)

__invert_ (self, /)
~self

Return self<=value.

__lshift_ (self, value, /)
Return self<<value.

_ lt_ (self, value, /)

Return self<value.

__mod__ (self, value, /)
Return self%value.

__mul_ (self, value, /)
Return self*value.

__ne_ (self, value, /)
Return self!=value.

__neg_ (self, /)
-self

__or_ (self, value, /)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
n
I
I
I
I
I
I
I
| _ le (self, value, /)
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
| Return self|value.
I
I

__pos__ (self, /)

6/11

+self

__pow__ (self, value, mod=None, /)
Return pow(self, value, mod).

__radd_ (self, value, /)
Return value+self.

__rand__ (self, value, /)
Return value&self.

__rdivmod_(self, value, /)
Return divmod(value, self).

__repr__ (self, /)
Return repr(self).

__rfloordiv_ (self, value, /)
Return value//self.

_ rlshift_ (self, value, /)
Return value<<self.

__rmod__ (self, value, /)
Return value%self.

__rmul__ (self, value, /)
Return value*self.

__ror__(self, value, /)
Return value|self.

__round_ (...)
Rounding an Integral returns itself.

Rounding with an ndigits argument also returns an integer.

__rpow_ (self, value, mod=None, /)
Return pow(value, self, mod).

__rrshift_ (self, value, /)
Return value>>self.

__rshift (self, value, /)
Return self>>value.

__rsub_ (self, value, /)
Return value-self.

) BioMath

7/ 1

e D e R =

__rtruediv__ (self, value, /)
Return value/self.

__rxor__ (self, value, /)
Return value”self.

__sizeof_ (self, /)
Returns size in memory, in bytes.

__sub_ (self, value, /)
Return self-value.

_ truediv__ (self, value, /)
Return self/value.

__trunc_ (...)
Truncating an Integral returns itself.

__xor__(self, value, /)
Return self”value.

as_integer ratio(self, /)
Return a pair of integers, whose ratio is equal to the original int.

The ratio is in lowest terms and has a positive denominator.

>>> (10).as_integer ratio()

(10, 1)

>>> (-10).as_integer ratio()
(-10, 1)

>>> (0).as_integer ratio()
(6, 1)

bit count(self, /)
Number of ones in the binary representation of the absolute value of

1f.

Also known as the population count.

>>> bin(13)

'Obl101"'

>>> (13).bit_count()
3

bit length(self, /)
Number of bits necessary to represent self in binary.

) BioMath

8/11

) BioMath

>>> bin(37)
'0b100101"'

>>> (37).bit length()
6

conjugate(...)
Returns self, the complex conjugate of any int.

is_integer(self, /)
Returns True. Exists for duck type compatibility with

to bytes(self, /, length=1, byteorder='big', *, signed=False)
Return an array of bytes representing an integer.

length
Length of bytes object to use. An OverflowError is raised if the
integer is not representable with the given number of bytes.

byteorder
The byte order used to represent the integer. If byteorder is
ig',
the most significant byte is at the beginning of the byte array. If
byteorder is 'little', the most significant byte is at the end of

~+
(¢]

byte array. To request the native byte order of the host system,

=
(¢]

“sys.byteorder' as the byte order value. Default is to use 'big'.
signed
Determines whether two's complement is used to represent the

If signed is False and a negative integer is given, an OverflowError
is raised.

I
I
I
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I
e
| is length 1.
I
I
b
I
I
h
I
s
I
I
I
n
I
I
I
Class methods defined here:

from bytes(bytes, byteorder='big', *, signed=False)
Return the integer represented by the given array of bytes.

bytes
Holds the array of bytes to convert. The argument must either
support the buffer protocol or be an iterable object producing

Bytes and bytearray are examples of built-in objects that support

buffer protocol.

9/ 11

) BioMath

| byteorder

| The byte order used to represent the integer. If byteorder is
‘big",

| the most significant byte is at the beginning of the byte array. If

| byteorder is 'little', the most significant byte is at the end of
the

| byte array. To request the native byte order of the host system,
use

| ‘sys.byteorder' as the byte order value. Default is to use 'big"'.
| signed
| Indicates whether two's complement is used to represent the integer.

Static methods defined here:

I
I
| _ new (*args, **kwargs)

| Create and return a new object. See help(type) for accurate
i

Data descriptors defined here:

denominator
the denominator of a rational number in lowest terms

I
I
I
I
I
| imag

| the imaginary part of a complex number
I

I

I

I

I

I

numerator
the numerator of a rational number in lowest terms

real
the real part of a complex number

Magic Methods

Wie man sieht, gibt es selbst fiir ein einfaches Integer-Objekt viele Methoden. Aulierdem
fallt auf, dass viele aber nicht alle Methoden mit Unterstrichen beginnen und enden.
Diese Methoden werden auch als “Magic Methods” oder “Dunder Methods” (Double
Underscore Methods) bezeichnet. Man kann sie direkt nutzen, indem man den Namen
des Objekts gefolgt von einem Punkt und dem Namen der Methode eingibt:

varl. abs ()

10

10/ 11

) BioMath

Obwohl es méglich ist, Magic Methods direkt aufzurufen, empfiehlt es sich in der Regel,
die entsprechenden Python-Funktionen zu verwenden, die eine hdhere
Abstraktionsebene und oft eine klarere, intentionale Syntax bieten. Fir den absoluten
Wert eines Objekts ware dies zum Beispiel die abs ()-Funktion, anstatt der Magic
Method . abs ():

abs(varl)

Es ist wichtig zu verstehen, dass “normale” Methoden, die nicht mit doppelten
Unterstrichen beginnen und enden, Teil der taglichen Arbeit mit Python sind und haufig
verwendet werden, um Operationen mit Objekten durchzuflhren. Die Zurtckhaltung
beim direkten Aufruf von Magic Methods dient dazu, die Lesbarkeit und Wartbarkeit des
Codes zu verbessern und sich an etablierte Python-Konventionen zu halten.

11

11/ 11

	Variablen zuweisen
	Methoden
	Magic Methods

