
1 / 5

Dictionaries
by Woche 2

Der vierte Typ von Sammlungen in Python sind Dictionaries. Auch Dictionaries sind
Listen sehr ähnlich: Sie sind nicht homogen, Verschachtelungen sind möglich, sie sind
geordnet¹ und mutable. Dictionaries unterscheiden sich aber auch von Listen: Anstelle
von Elementen, enthalten sie Key-Value-Paare (Schlüssel-Value-Paare) und werden mit
{} erstellt.

Arbeiten mit Dictionaries
Erstellen
Dictionaries werden - wie auch Sets - mit geschweiften Klammern {} erstellt. Ein
Dictionary besteht im Gegensatz zu den drei anderen Sammlungstypen allerdings aus
Key-Value-Paaren, wobei der Key eindeutig sein muss. Demnach können also die
Values Duplikate enthalten, die Key aber nicht. Die Key-Value-Paare werden durch ein :
getrennt und die einzelnen Paare durch ein ,.

Der Key kann dabei ein beliebiges immutable Objekt sein, wie z.B. ein String, Integer
oder ein Tupel. Der Value kann ein beliebiges Objekt sein (also immutable oder
mutable), wie z.B. ein String, Integer, Tupel, Liste, Set oder ein anderes Dictionary.

Wie bei Listen kann mittels eckiger Klammern auf einzelne Elemente zugegriffen
werden. Dabei muss im Gegensatz zu Listen nicht der Index, sondern der Key
angegeben werden. Ausgegeben wird dann der Value des Keys.

artikel = {'Burger': 4.99, 'Pommes': 2.99}

artikel['Burger']

4.99

x = {'Name': 'Donald',
 'Jahr': 1934,
 'Freunde': ['Daisy', 'Mickey', 'Goofy']}

¹Seit Python 3.7 sind Dictionaries geordnet. Das bedeutet, dass die Reihenfolge der Elemente im
Dictionary erhalten bleibt.

1

2 / 5

x['Jahr']

1934

Darüber hinaus können Dictionarys auch mittels der Funktion dict() wie folgt erstellt
werden:

x = dict(Name='Donald',
 Jahr=1934,
 Freunde=['Daisy', 'Mickey', 'Goofy'])

Auch dictionaries können in andere Sammlungstypen umgewandelt werden. Dabei wird
die ursprüngliche Sammlung nicht verändert, sondern eine neue Sammlung erstellt.
Standardmäßig wird dabei nur der Key umgewandelt. Um stattdessen den Value
umzuwandeln, kann die Methode values() verwendet werden.

artikel = {'Burger': 4.99, 'Pommes': 2.99}
list(artikel)

['Burger', 'Pommes']

artikel = {'Burger': 4.99, 'Pommes': 2.99}
list(artikel.values())

[4.99, 2.99]

Um umgekehrt aus einem anderen Sammlungstyp ein Dictionary zu erstellen, gibt es
mehrere Ansätze. Falls vorerst nur die Keys vorhanden sind, kann kann die Methode
fromkeys() verwendet werden. Dabei wird für jeden Key ein Value erstellt, der
standardmäßig None ist. Liegen die Keys und Values in zwei getrennten Sammlungen
vor, kann die Methode zip() verwendet werden. Dabei werden die beiden Sammlungen
paarweise zusammengeführt.

schluessel_liste = ['a', 'b', 'c']
#
dict.fromkeys(schluessel_liste)

{'a': None, 'b': None, 'c': None}

2

3 / 5

schluessel_tuple = ('a', 'b', 'c')
wert_tuple = (10, 20, 30)
dict(zip(schluessel_tuple, wert_tuple))

{'a': 10, 'b': 20, 'c': 30}

Hinzufügen / Verändern
Anstelle von append() oder insert() wie bei Listen gibt es bei Dictionaries die Methode
update(). Diese fügt ein Key-Value-Paar hinzu, falls der Key noch nicht im Dictionary
enthalten ist. Falls er bereits enthalten ist, wird der Value des Keys überschrieben.
Anstatt die Methode anzuwnden, kann beides aber auch erreicht werden, indem der Key
direkt angesprochen wird.

artikel = {'Burger': 4.99, 'Pommes': 2.99}
artikel.update({'Burger': 5.99})
artikel.update({'Cola': 1.99})
artikel

{'Burger': 5.99, 'Pommes': 2.99, 'Cola': 1.99}

artikel = {'Burger': 4.99, 'Pommes': 2.99}
artikel['Burger'] = 5.99
artikel['Cola'] = 1.99
artikel

{'Burger': 5.99, 'Pommes': 2.99, 'Cola': 1.99}

Der Unterschied ist vor allem, dass bei update() mehrere Key-Value-Paare hinzugefügt
werden können. So hätte das erste Beispiel auch mit einer Zeile weniger auskommen
können: artikel.update({'Burger': 5.99, 'Cola': 1.99}).

Entfernen
Anstelle von remove() wie bei Listen gibt es bei Dictionaries die Methode pop() aber
auch die Funktion del(). Die pop()-Methode entfernt ein Key-Value-Paar und gibt den
Value zurück. Im Unterschied zur selben Methode bei Listen, muss bei Dictionaries der
Key angegeben werden, der entfernt werden soll.

artikel = {'Burger': 4.99, 'Pommes': 2.99, 'Cola': 1.99}
x = artikel.pop('Burger')

3

4 / 5

print(x)
print(artikel)

4.99
{'Pommes': 2.99, 'Cola': 1.99}

artikel = {'Burger': 4.99, 'Pommes': 2.99}

del(artikel['Pommes'])
artikel

{'Burger': 4.99}

Prüfen
Wie bei Listen gibt es auch bei Dictionaries z.B. die Möglichkeit via in zu prüfen, ob ein
Element enthalten ist. Diese prüft allerdings nur die Keys und nicht die Values. Man
kann übrigens auch explizit artikel.keys() anstatt artikel (analog zu
artikel.values()) schreiben, um zu verdeutlichen, dass die Keys geprüft werden.

artikel = {'Burger': 4.99, 'Pommes': 2.99}
4.99 in artikel.keys() # oder nur artikel

False

artikel = {'Burger': 4.99, 'Pommes': 2.99}
4.99 in artikel.values()

True

Tabellendaten
Dictionaries eignen sich auch, um Tabellendaten zu speichern. Dabei wird jeder Key als
Spaltenname und jeder Value als Zeile interpretiert. So kann z.B. eine Tabelle mit den
Spalten “Name”, “Alter” und “Geschlecht” als Dictionary dargestellt werden. So lässt sich
diese Tabelle

Name Jahr Tier
Donald 1934 Ente
Daisy 1937 Ente

4

5 / 5

Name Jahr Tier
Mickey 1928 Maus

wie folgt als Dictionary ausdrücken:

dict_tabelle = {'Name': ['Donald', 'Daisy', 'Mickey'],
 'Jahr': [1934, 1937, 1928],
 'Tier': ['Ente', 'Ente', 'Maus']}

Allerdings werden wir in diesem Kurs noch eine bessere Möglichkeit kennenlernen, um
mit Tabellendaten zu arbeiten: DataFrames. Diese sind speziell für Tabellendaten
konzipiert und bieten viele nützliche Funktionen, um diese zu verarbeiten. Dazu aber
später mehr.

 Weitere Ressourcen

• Python Tutorial #23 (deutsch) - Dictionary nur bis 8:26
• ALL 11 Dictionary Methods In Python EXPLAINED

5

https://youtu.be/U_NbaxpdQ7M?si=ZFDQ8ND6itTtVa3u
https://youtu.be/u0yr9B3nH8c?si=mJ3vTtKRJKBY2Z-g

	Arbeiten mit Dictionaries
	Erstellen
	Hinzufügen / Verändern
	Entfernen
	Prüfen
	Tabellendaten

