< BioMath

Dictionaries

by Woche 2

Der vierte Typ von Sammlungen in Python sind Dictionaries. Auch Dictionaries sind
Listen sehr ahnlich: Sie sind nicht homogen, Verschachtelungen sind maoglich, sie sind
geordnet’ und mutable. Dictionaries unterscheiden sich aber auch von Listen: Anstelle
von Elementen, enthalten sie Key-Value-Paare (Schlissel-Value-Paare) und werden mit
{} erstellt.

Arbeiten mit Dictionaries
Erstellen

Dictionaries werden - wie auch Sets - mit geschweiften Klammern {} erstellt. Ein
Dictionary besteht im Gegensatz zu den drei anderen Sammlungstypen allerdings aus
Key-Value-Paaren, wobei der Key eindeutig sein muss. Demnach konnen also die
Values Duplikate enthalten, die Key aber nicht. Die Key-Value-Paare werden durch ein :
getrennt und die einzelnen Paare durch ein ,.

Der Key kann dabei ein beliebiges immutable Objekt sein, wie z.B. ein String, Integer
oder ein Tupel. Der Value kann ein beliebiges Objekt sein (also immutable oder
mutable), wie z.B. ein String, Integer, Tupel, Liste, Set oder ein anderes Dictionary.

Wie bei Listen kann mittels eckiger Klammern auf einzelne Elemente zugegriffen
werden. Dabei muss im Gegensatz zu Listen nicht der Index, sondern der Key
angegeben werden. Ausgegeben wird dann der Value des Keys.

artikel = {'Burger': 4.99, 'Pommes': 2.99}

artikel['Burger']

4.99
x = {'Name': 'Donald',
'Jahr': 1934,
'Freunde': ['Daisy', 'Mickey', 'Goofy'l}

'Seit Python 3.7 sind Dictionaries geordnet. Das bedeutet, dass die Reihenfolge der Elemente im
Dictionary erhalten bleibt.

) BioMath

x['Jahr']

1934

Darlber hinaus kénnen Dictionarys auch mittels der Funktion dict () wie folgt erstellt
werden:

X = dict(Name='Donald',
Jahr=1934,
Freunde=['Daisy', 'Mickey', 'Goofy'])

Auch dictionaries kdnnen in andere Sammlungstypen umgewandelt werden. Dabei wird
die urspriingliche Sammlung nicht verandert, sondern eine neue Sammlung erstellt.
Standardmalig wird dabei nur der Key umgewandelt. Um stattdessen den Value
umzuwandeln, kann die Methode values() verwendet werden.

artikel = {'Burger': 4.99, 'Pommes': 2.99}
list(artikel)

['Burger', 'Pommes']

artikel = {'Burger': 4.99, 'Pommes': 2.99}
list(artikel.values())

[4.99, 2.99]

Um umgekehrt aus einem anderen Sammlungstyp ein Dictionary zu erstellen, gibt es
mehrere Ansatze. Falls vorerst nur die Keys vorhanden sind, kann kann die Methode
fromkeys () verwendet werden. Dabei wird fur jeden Key ein Value erstellt, der
standardmafig None ist. Liegen die Keys und Values in zwei getrennten Sammlungen
vor, kann die Methode zip() verwendet werden. Dabei werden die beiden Sammlungen
paarweise zusammengefuhrt.

schluessel liste = ['a', 'b', 'c']

dict.fromkeys(schluessel liste)

{'a': None, 'b': None, 'c': None}

218

schluessel tuple = ('a', 'b', 'c")
wert tuple = (10, 20, 30)
dict(zip(schluessel tuple, wert tuple))

{'a': 10, 'b': 20, 'c': 30}

Hinzufugen / Verandern

Anstelle von append() oder insert() wie bei Listen gibt es bei Dictionaries die Methode
update(). Diese fugt ein Key-Value-Paar hinzu, falls der Key noch nicht im Dictionary
enthalten ist. Falls er bereits enthalten ist, wird der Value des Keys Uberschrieben.
Anstatt die Methode anzuwnden, kann beides aber auch erreicht werden, indem der Key
direkt angesprochen wird.

artikel = {'Burger': 4.99, 'Pommes': 2.99}
artikel.update({'Burger': 5.99})
artikel.update({'Cola': 1.99})

artikel

{'Burger': 5.99, 'Pommes': 2.99, 'Cola': 1.99}

artikel = {'Burger': 4.99, 'Pommes': 2.99}
artikel['Burger'] = 5.99
artikel['Cola'] = 1.99
artikel

{'Burger': 5.99, 'Pommes': 2.99, 'Cola': 1.99}

Der Unterschied ist vor allem, dass bei update() mehrere Key-Value-Paare hinzugefligt
werden kénnen. So hatte das erste Beispiel auch mit einer Zeile weniger auskommen
kbnnen: artikel.update({'Burger': 5.99, 'Cola': 1.99}).

Entfernen

Anstelle von remove () wie bei Listen gibt es bei Dictionaries die Methode pop() aber
auch die Funktion del(). Die pop ()-Methode entfernt ein Key-Value-Paar und gibt den
Value zurlck. Im Unterschied zur selben Methode bei Listen, muss bei Dictionaries der
Key angegeben werden, der entfernt werden soll.

artikel = {'Burger': 4.99, 'Pommes': 2.99, 'Cola': 1.99}
x = artikel.pop('Burger")

< BioMath

3/5

< BioMath

print(x)
print(artikel)

4.99
{'Pommes': 2.99, 'Cola': 1.99}

artikel = {'Burger': 4.99, 'Pommes': 2.99}

del(artikel['Pommes'])
artikel

{'Burger': 4.99}

Prufen

Wie bei Listen gibt es auch bei Dictionaries z.B. die Mdglichkeit via in zu prifen, ob ein
Element enthalten ist. Diese pruft allerdings nur die Keys und nicht die Values. Man
kann Ubrigens auch explizit artikel.keys() anstatt artikel (analog zu
artikel.values()) schreiben, um zu verdeutlichen, dass die Keys geprift werden.

artikel = {'Burger': 4.99, 'Pommes': 2.99}
4.99 in artikel.keys() # oder nur artikel

False

artikel = {'Burger': 4.99, 'Pommes': 2.99}
4.99 in artikel.values()

True

Tabellendaten

Dictionaries eignen sich auch, um Tabellendaten zu speichern. Dabei wird jeder Key als
Spaltenname und jeder Value als Zeile interpretiert. So kann z.B. eine Tabelle mit den
Spalten “Name”, “Alter” und “Geschlecht” als Dictionary dargestellt werden. So lasst sich
diese Tabelle

Name | Jahr | Tier
Donald | 1934 | Ente
Daisy [1937 | Ente

4/5

Name | Jahr | Tier
Mickey [1928 | Maus

wie folgt als Dictionary ausdricken:

dict tabelle = {'Name': ['Donald', 'Daisy', 'Mickey'l],
‘Jahr': [1934, 1937, 1928],
'Tier': ['Ente', 'Ente', 'Maus']}

Allerdings werden wir in diesem Kurs noch eine bessere Mdéglichkeit kennenlernen, um
mit Tabellendaten zu arbeiten: DataFrames. Diese sind speziell flir Tabellendaten
konzipiert und bieten viele nitzliche Funktionen, um diese zu verarbeiten. Dazu aber
spater mehr.

© Weitere Ressourcen

» Python Tutorial #23 (deutsch) - Dictionary nur bis 8:26
* ALL 11 Dictionary Methods In Python EXPLAINED

< BioMath

5/5

https://youtu.be/U_NbaxpdQ7M?si=ZFDQ8ND6itTtVa3u
https://youtu.be/u0yr9B3nH8c?si=mJ3vTtKRJKBY2Z-g

	Arbeiten mit Dictionaries
	Erstellen
	Hinzufügen / Verändern
	Entfernen
	Prüfen
	Tabellendaten

