Listen

by Woche 2

Wie bereits erwahnt sind Listen die am haufigsten verwendete Art von Sammlungen in
Python. Sie werden mit eckigen Klammern geschrieben, kdnnen heterogen sein und
auch verschachtelt werden.

Aulerdem sind Listen geordnert, kbnnen Duplikate enthalten und sie sind mutable. Was

diese Begriffe bedeuten, wird im Folgenden genauer erlautert. Da Listen die erste Art
Sammlung ist, die wir uns genauer ansehen, werden wir ausflihrlicher auf die
Eigenschaften und Funktionen von Listen eingehen um dann bei den anderen
Sammlungen nur noch auf die Unterschiede zu Listen eingehen zu missen.

Mutable vs. Immutable

Bei der Zuweisung von Variablen in Python muss man sich bewusst sein, dass es
“‘mutable” (veranderbar) und “immutable” (unveranderbare) Objekttypen gibt.

» Objekte, die immutable sind, kdnnen nach ihrer Erzeugung nicht verandert werden.
Flhrt man eine Operation aus, die das Objekt zu verandern scheint, so wird im
Speicher tatsachlich ein vollig neues Objekt erzeugt.

* Objekte, die mutable sind, werden stattdessen bei einer entsprechenden Operation
direkt im Speicher verandert. Wenn sich eine andere Variable auf dasselbe Objekt
bezieht, so andert sich auch der Wert dieser Variable.

Der wichtige Unterschied soll durch diese Beispiele verdeutlicht werden. In beiden
Fallen erzeugen wir zunachst eine Variable varl und weisen ihr einen Wert zu. Dann
weisen wir varl einer weiteren Variable var2 zu und verandern (vermeintlich nur) var2.

Immutable

varl = 'Text'
var2 = varl
var2 = var2.lower()

print(varl)

Text

print(var2)

) BioMath

1/14



text

Alle grundlegenden Datentypen sind immutable, sodass bei der Zuweisung des Strings
'‘Text' zu varl ein immutable Objekt erzeugt wird. Durch die Zuweisung von varl zu
var2 entsteht zunachst lediglich ein Verweis auf dasselbe Objekt. Sobald allerdings var2
mit der Funktion lower() verandert wird (GroRbuchstaben werden zu Kleinbuchstaben),
wird ein neues Objekt var2 im Speicher erzeugt, sodass var2, nicht aber varl verandert
erscheinen.

Als Eselsbriicke kann man sich vorstellen, dass die Informationen auf einem
ausgedruckten Blatt Papier stehen. Sie sind somit unveranderbar und konnen nur durch
ein neues Blatt Papier ersetzt werden.

Beispiele:

» Zahlen
 Strings
* Tuples

Mutable

varl = [1, 2, 3]
var2 = varl
var2.append(4)

print(varl)

[1, 2, 3, 4]

print(var2)

[1, 2, 3, 4]

In varl wird hier eine Liste mit den Zahlen 1, 2 und 3 erzeugt. Mit der Zuweisung von
varl zu var2 entsteht auch hier zunachst ein Verweis auf dieselbe Liste. Schlief3lich wird
var2 mit der Funktion append() um die Zahl 4 erweitert. Da Listen mutable Objekte sind,
wird das Objekt im Speicher verandert. Da var2 lediglich auf var1 verweist, wird die
zugrundeliegende Liste in varl geandert, sodass letztendliche varl und var2 verandert
erscheinen.

) BioMath

2/14



Als Eselsbriicke kann man sich vorstellen, dass die Informationen auf einem Whiteboard
stehen. Sie sind somit verdanderbar und kénnen durch Uberschreiben oder Léschen
verandert werden.

Beispiele:

e Listen
» Dictionaries
* Sets

Je nach Erfahrung z.B. mit anderen Programmiersprachen fiihlt sich die eine oder
andere Variante ggf. intuitiver an. Wie so oft haben beide ihre Vor- und Nachteile.

Der Vorteil von immutable Objekten ist, dass sie die Integritat und Vorhersehbarkeit des
Codes erhdhen. Da ein immutable Objekt nach seiner Erstellung nicht mehr verandert
werden kann, verringert dies das Risiko unbeabsichtigter Nebeneffekte. Das macht den
Code zuverlassiger und oft einfacher zu debuggen, da die Werte von immutablen
Objekten vorhersagbar bleiben.

Der Vorteil von mutable Objekten ist hingegen ihre Effizienz, da nicht bei jeder Anderung
eine neue Kopie des Objekts erzeugt werden muss. In Performance-kritischen
Anwendungen bzw. mit groRen Datenmengen kann dies einen erheblichen Unterschied
machen.

Insgesamt ist die Wahl zwischen “mutable” und “immutable” Objekten eine Frage des
spezifischen Anwendungsfalls und des gewtinschten Verhaltens.

Mit Listen arbeiten
Erstellen

Eine Liste wird erstellt, indem eine durch Kommas getrennte Sequenz von Objekten in
eckigen Klammern angegeben wird:

meine liste = ['Etwas', 42, 'Text', 42, 12.6, Truel
meine liste

['Etwas', 42, 'Text', 42, 12.6, True]

zahlen liste = [1, 6, 3, 2]
zahlen liste

[1, 6, 3, 2]

) BioMath

3/14



Wie bereits erwahnt, kbnnen auch mehrere Listen (oder andere Sammlungen) in eine
Liste getan werden, sodass eine geschachtelte Liste (nested list) entsteht:

geschachtelte liste = [meine liste, zahlen liste]
geschachtelte liste

[['Etwas', 42, 'Text', 42, 12.6, Truel, [1, 6, 3, 2]]

Es ist auch mdglich eine leere Liste via []1 zu erzeugen, sowie bestimmte andere
Objekte mit der Funktion 1ist() in Listen umzuwandeln.

x =[]
X

X = list('Gut"')
X

['c', 'u', 't']

Indizierung

Listen und Sequenzen in Python sind indiziert, d.h. jede Position in der Sequenz hat
eine zugehdrige Nummer - den Index. Mit diesem kann man auf den Wert an dieser
Position zugreifen. Python-Sequenzen beginnen bei Null (!), sodass das erste Element
einer Sequenz den Index 0 hat, das zweite Element den Index 1 und so weiter. Ein
Element aus einer Liste kann abgerufen werden, indem man den Index in eckige
Klammern hinter den Listennamen setzt. Es kann sogar mit negative Indices rickwarts
auf die Liste zugegriffen werden, dann ist das letzte Element aber bei -1:

x = ['Timon', 'sagt', 'Hakuna', 'Matata', '!'l]
x[0]
'Timon'
x[2]
4

) BioMath

4/14



) BioMath

'Hakuna'

x[-11]

Mittels Indizierung kann man die einzelnen Elemente nicht nur ansprechen, sondern
auch verandern, wobei del () genutzt wird um ein Element zu 16schen:

x[0] = 'Pumbaa'’
X

['Pumbaa', 'sagt', 'Hakuna', 'Matata', '!']

Auch die Elemente in geschachtelten Listen kdnnen entsprechend mit zusatzlichen
Indizes angesprochen werden:

x=[['D", 'B", 'Z'], [1, 2]]

x=[['D", 'B", 'Z'], [1, 2]]

x[0][1]
IBI

Slicing

Slicing, also das Ausschneiden einer Teilmenge, funktioniert ahnlich wie die Indizierung,
allerdings kann in den eckigen Klammern die Syntax [start:stop:step] angewendet
werden. Dabei bezeichnet

* start den Index des ersten Elements ab und inklusive dem ausgeschnitten werden
soll (Default = 0)

* stop den Index des letzten Elements bis und exklusive (!) dem ausgeschnitten werden
soll (Default = letztes Element)

5/14



* step wie of im Ausschnitt Elemente abgetasted werden sollen (Default = 1). Auch hier
kann mit negativen Werten gearbeitet um riickwarts abzutasten.

x =11, 2, 3, 4, 5]

x[0:3]
[1, 2, 3]

x =11, 2, 3, 4, 5]

x[0:3:2]

[1, 31
Lasst man die Werte frei, werden die defaults angewendet:

X = [1I 2’ 3' 4’ 5]

x[1:]
[2, 3, 4, 5]

x =11, 2, 3, 4, 5]

x[::2]
[1, 3, 5]

Hinzufligen
Mit 1ist.append() kann ein Element ans Ende einer Liste hinzugeflgt werden, wahrend
mit list.insert() ein Element an einer bestimmten Position (=Index; siehe weiter unten)

eingefligt werden kann.

x = [1, 2, 3]

X.append(10)
X

) BioMath

6/14



) BioMath

[1, 2, 3, 10]

x = [1, 2, 3]

X.insert (1, 33)
X

[1, 33, 2, 3]

Wenn nicht nur ein einzelnes Element, sondern z.B. eine andere Liste zu einer
bestehenden Liste hinzugefiigt werden soll, so funktioniert dies entweder schlicht mit
einem + oder mit list.extend(). Der Unterschied ist, dass + eine neue Liste erzeugt,
wahrend list.extend() die bestehende Liste verandert. Wir demonstrieren dies mit Liste
b von oben:

X
1l

[1, 2]
= ['drei', True]

<
|

X +y

[1, 2, 'drei', Truel

- [1I 2]
['drei', True]

< x
o

x.extend(y)

[1, 2, 'drei', Truel

Entfernen

Der Befehle 1ist.clear entfernt alle Elemente aus einer Liste, wahrend 1ist. remove()
(nur!) das erste passende Element aus einer Liste entfernt. Um ein Element an einer
bestimmten Position zu entfernen, kann del() in Kombination mit dem Index (nicht dem
zu entfernenden Wert!) verwendet werden.

x =11, 2, 3, 2, 1]

7/14



x.clear()
X

X = [1, 2, 3, 21 1]

X.remove(2)
X

(1, 3, 2, 1]

x = [1, 2, 3, 2, 1]
del(x[2])

X

(1, 2, 2, 1]

Schlieflich sei noch die Funktion list.pop() erwahnt, die stets das letzte Element einer
Liste herausldst, d.h. in der urspriinglichen Liste entfernt und gleichzeitig zurlickgibt:

X
y

[1, 2, 3]
X.pop()

print(y)

print(x)
[1, 2]

Verandern

Weitere gebrauchliche Listenfunktionen sind list.sort(), welche die Elemente einer
Liste sortiert, und list.reverse(), welche die Reihenfolge der Elemente umkehrt. Beide
Funktionen verandern die Liste, auf die sie angewendet werden. list.sort() kann auch
mit dem Schlisselwort reverse = True angewendet werden, um die Liste in umgekehrter
Reihenfolge zu sortieren. Wir nutzen hier die zahlen_liste = [1, 6, 3, 2] von oben.

) BioMath

8/14



x = [3, 1, 2]
X.reverse()

X

[2, 1, 3]

x.sort()

[1, 2, 3]

x = [3, 1, 2]

X.sort(reverse = True)

X
(3, 2, 1]

Prufen

Es ist oft hilfreich bestimmte Attribute von Listen zu extrahieren bzw. zu priifen. Die
Lange einer Liste, also die Anzahl der in ihr enthaltenen Elemente, kann mittels len()
ausgegeben werden und wird auch haufig flr weitere Operationen bendtigt. Ebenso
kénnen die Schlisselworter in und not verwendet werden um zu priifen ob ein Element
bzw. ob ein Element nicht in einer Liste enthalten ist. Schliellich kann auch mittels
list.count() gezahlt werden wie oft ein Element in einer Liste enthalten ist.

x = [42, 1, 42]

len(x)

x = [42, 1, 42]

42 in x

) BioMath

9/14



) BioMath

True

x = [42, 1, 42]

42 not in x

False

x = [42, 1, 42]

X.count(42)

Gegeben, dass die Liste ausschliellich Zahlen enthalt, kbnnen auch einfache
Rechenoperationen wie Bestimmung des Maximums, Minimums oder der Summe
durchgeflihrt werden.

x = [3, 1, 2]
max (x)

3

x = [3, 1, 2]
min(x)

1

x = [3, 1, 2]
sum(x)

6

10

10/ 14



) BioMath

Kopieren

Wie bereits erwahnt, sind Listen in Python mutable Objekte. Nattrlich kann es aber auch
gewilnscht sein eine Kopie einer Liste zu erzeugen, die eben nicht dauerhaft auf eine
andere Liste verweist, sondern ab dem Moment eine echte, unabhangige Kopie darstellt,
mit der separat weitergearbeitet werden kann. Zumindest bedingt (!) ist dies moglich via
list.copy():

listel = [1, 2, 3]
liste2 = listel
liste2.append(4)

print(listel)
[1, 2, 3, 4]
print(liste2)
[1, 2, 3, 4]

liste3 = [1, 2, 3]
liste4 = liste3.copy()
listed.append(4)

print(liste3)
[1, 2, 3]
print(liste4)

[1, 2, 3, 4]

Wie zu sehen wird - im Gegensatz zum Beispiel mit listel und liste2 - das Objekt
liste3 eben nicht durch das Anwenden der append() Funktion auf 1iste4 verandert. Wie
zu erwarten verhalt sich liste4 also als unabhangige Kopie von liste3. Dies stimmt
leider wie gesagt nur bedingt, da list.copy() eine sogenannte flache (shallow) Kopie
erzeugt. Dies meint, dass das Erzeugen von unabhangigen Kopien nur auf der obersten
Listen-Ebene erfolgt. Sobald also eine Liste geschachtelt ist und auf den unteren
Ebenen weitere mutable Objekte enthalt, sind diese weiterhin nicht unabhangig. Um
auch diese unabhangig zu machen, also eine tiefe (deep) Kopie zu erzeugen, kann die

11

11/ 14



) BioMath

Funktion copy.deepcopy() aus dem copy-Modul verwendet werden. Es folgen drei
Beispiele, die dies verdeutlichen sollen. Die Beispiele mit 1isteA bis listeD entsprechen
dabei der Vorgehensweise von oben, wobei mit listeF die tiefe Kopie von listeE
erzeugt wird. In allen Fallen wird sowohl ein Element in der obersten Listenebene, als
auch in der Listenebene darunter verandert, sodass sich die Ergebnisse aller drei
Beispiele unterscheiden:

listeA = [[1,2], [3,4]]
listeB = listeA
listeB[1].append(5)
listeB.append(6)

print(listeA)

(r1, 21, (3, 4, 5], 6]

print(listeB)

(r1, 21, (3, 4, 5], 6]

listeC = [[1,2], [3,4]]

listeD = listeC.copy()

listeD[1].append(5)
listeD.append(6)

print(listeC)

(r1, 21, (3, 4, 511

print(listeD)

(r1, 21, (3, 4, 5], 6]

import copy

listeE = [[1,2], [3,4]]

12

12/ 14



listeF = copy.deepcopy(listeE)
listeF[1].append(5)
listeF.append(6)

print(listeE)

({1, 21, [3, 4]]

print(listeF)

(r1, 21, (3, 4, 5], 6]

© Weitere Ressourcen

* Mutable und Immutable in Python

» Mutable vs Immutable Objects in Python

» Python Tutorial deutsch 14/24 - Einfuhrung in Listen
» Python Tutorial deutsch 15/24 - Zugriff auf Listen

* ALL 11 LIST METHODS IN PYTHON EXPLAINED
* More on Lists

Ubungen
Erzeuge drei unterschiedlich lange Listen, deren Lange jeweils identisch zu ihrer
Summe ist. Keine der Listen darf nur aus Einsen bestehen.

* (A) Geschafft
Erzeuge eine Liste, deren Lange, Summe und Maximalwert identisch ist.
* (A) Geschafft

Erstelle ein separates Jupyter Notebook, in welchem du zu Beginn drei Listen mit den
Namen ‘@’, ‘b’ und ‘c’ und einem Inhalt deiner Wahl erstellst. Darauthin soll jede der in
diesem Kapitel genannten Funktionalitdten mindestens einmal auf mindestens eine der
Listen angewendet werden. Es gilt also alle Methoden/Funktionen nacheinander
anzuwenden, ohne jemals mehr als drei Listen zu verwenden. Diese Ubung soll
einerseits die Anwendung der Methoden/Funktionen vertiefen und andererseits die
Veranderung von mutable Listen durch die Methoden/Funktionen verdeutlichen.
Strukturiere das Jupyter Notebook mithilfe von Uberschriften und kurzen Erlauterungen

so0, dass es fir jeden Schritt kurz erlautert was geschieht - ahnlich diesem Kapitel hier.

13

) BioMath

13/14


https://youtu.be/DrdYOSjqozc?feature=shared
https://medium.com/@meghamohan/mutable-and-immutable-side-of-python-c2145cf72747
https://youtu.be/ihF8bZoauBs?si=cEvQIRy0tyF0L_4I
https://youtu.be/_XzWPXvya2w?si=ial_ZbV7HKmnPTgs
https://youtu.be/0yySumZTxJ0?si=JHJ0Xt3nJJp-_3Tg
https://docs.python.org/3/tutorial/datastructures.html#more-on-lists

Ziel ist es, dass du dieses Dokument spater als Referenz nutzen kannst, falls du dich
mal nicht mehr an diese Methoden erinnern solltest.

* (A) Geschafft

14




	Mutable vs. Immutable
	Mit Listen arbeiten
	Erstellen
	Indizierung
	Slicing
	Hinzufügen
	Entfernen
	Verändern
	Prüfen
	Kopieren

	Übungen

