
1 / 14

Listen
by Woche 2

Wie bereits erwähnt sind Listen die am häufigsten verwendete Art von Sammlungen in
Python. Sie werden mit eckigen Klammern geschrieben, können heterogen sein und
auch verschachtelt werden.

Außerdem sind Listen geordnert, können Duplikate enthalten und sie sind mutable. Was
diese Begriffe bedeuten, wird im Folgenden genauer erläutert. Da Listen die erste Art
Sammlung ist, die wir uns genauer ansehen, werden wir ausführlicher auf die
Eigenschaften und Funktionen von Listen eingehen um dann bei den anderen
Sammlungen nur noch auf die Unterschiede zu Listen eingehen zu müssen.

Mutable vs. Immutable
Bei der Zuweisung von Variablen in Python muss man sich bewusst sein, dass es
“mutable” (veränderbar) und “immutable” (unveränderbare) Objekttypen gibt.

• Objekte, die immutable sind, können nach ihrer Erzeugung nicht verändert werden.
Führt man eine Operation aus, die das Objekt zu verändern scheint, so wird im
Speicher tatsächlich ein völlig neues Objekt erzeugt.

• Objekte, die mutable sind, werden stattdessen bei einer entsprechenden Operation
direkt im Speicher verändert. Wenn sich eine andere Variable auf dasselbe Objekt
bezieht, so ändert sich auch der Wert dieser Variable.

Der wichtige Unterschied soll durch diese Beispiele verdeutlicht werden. In beiden
Fällen erzeugen wir zunächst eine Variable var1 und weisen ihr einen Wert zu. Dann
weisen wir var1 einer weiteren Variable var2 zu und verändern (vermeintlich nur) var2.

Immutable

var1 = 'Text'
var2 = var1
var2 = var2.lower()

print(var1)

Text

print(var2)

1

2 / 14

text

Alle grundlegenden Datentypen sind immutable, sodass bei der Zuweisung des Strings
'Text' zu var1 ein immutable Objekt erzeugt wird. Durch die Zuweisung von var1 zu
var2 entsteht zunächst lediglich ein Verweis auf dasselbe Objekt. Sobald allerdings var2
mit der Funktion lower() verändert wird (Großbuchstaben werden zu Kleinbuchstaben),
wird ein neues Objekt var2 im Speicher erzeugt, sodass var2, nicht aber var1 verändert
erscheinen.

Als Eselsbrücke kann man sich vorstellen, dass die Informationen auf einem
ausgedruckten Blatt Papier stehen. Sie sind somit unveränderbar und können nur durch
ein neues Blatt Papier ersetzt werden.

Beispiele:

• Zahlen
• Strings
• Tuples

Mutable

var1 = [1, 2, 3]
var2 = var1
var2.append(4)

print(var1)

[1, 2, 3, 4]

print(var2)

[1, 2, 3, 4]

In var1 wird hier eine Liste mit den Zahlen 1, 2 und 3 erzeugt. Mit der Zuweisung von
var1 zu var2 entsteht auch hier zunächst ein Verweis auf dieselbe Liste. Schließlich wird
var2 mit der Funktion append() um die Zahl 4 erweitert. Da Listen mutable Objekte sind,
wird das Objekt im Speicher verändert. Da var2 lediglich auf var1 verweist, wird die
zugrundeliegende Liste in var1 geändert, sodass letztendliche var1 und var2 verändert
erscheinen.

2

3 / 14

Als Eselsbrücke kann man sich vorstellen, dass die Informationen auf einem Whiteboard
stehen. Sie sind somit veränderbar und können durch Überschreiben oder Löschen
verändert werden.

Beispiele:

• Listen
• Dictionaries
• Sets

Je nach Erfahrung z.B. mit anderen Programmiersprachen fühlt sich die eine oder
andere Variante ggf. intuitiver an. Wie so oft haben beide ihre Vor- und Nachteile.

Der Vorteil von immutable Objekten ist, dass sie die Integrität und Vorhersehbarkeit des
Codes erhöhen. Da ein immutable Objekt nach seiner Erstellung nicht mehr verändert
werden kann, verringert dies das Risiko unbeabsichtigter Nebeneffekte. Das macht den
Code zuverlässiger und oft einfacher zu debuggen, da die Werte von immutablen
Objekten vorhersagbar bleiben.

Der Vorteil von mutable Objekten ist hingegen ihre Effizienz, da nicht bei jeder Änderung
eine neue Kopie des Objekts erzeugt werden muss. In Performance-kritischen
Anwendungen bzw. mit großen Datenmengen kann dies einen erheblichen Unterschied
machen.

Insgesamt ist die Wahl zwischen “mutable” und “immutable” Objekten eine Frage des
spezifischen Anwendungsfalls und des gewünschten Verhaltens.

Mit Listen arbeiten
Erstellen
Eine Liste wird erstellt, indem eine durch Kommas getrennte Sequenz von Objekten in
eckigen Klammern angegeben wird:

meine_liste = ['Etwas', 42, 'Text', 42, 12.6, True]
meine_liste

['Etwas', 42, 'Text', 42, 12.6, True]

zahlen_liste = [1, 6, 3, 2]
zahlen_liste

[1, 6, 3, 2]

3

4 / 14

Wie bereits erwähnt, können auch mehrere Listen (oder andere Sammlungen) in eine
Liste getan werden, sodass eine geschachtelte Liste (nested list) entsteht:

geschachtelte_liste = [meine_liste, zahlen_liste]
geschachtelte_liste

[['Etwas', 42, 'Text', 42, 12.6, True], [1, 6, 3, 2]]

Es ist auch möglich eine leere Liste via [] zu erzeugen, sowie bestimmte andere
Objekte mit der Funktion list() in Listen umzuwandeln.

x = []
x

[]

x = list('Gut')
x

['G', 'u', 't']

Indizierung
Listen und Sequenzen in Python sind indiziert, d.h. jede Position in der Sequenz hat
eine zugehörige Nummer - den Index. Mit diesem kann man auf den Wert an dieser
Position zugreifen. Python-Sequenzen beginnen bei Null (!), sodass das erste Element
einer Sequenz den Index 0 hat, das zweite Element den Index 1 und so weiter. Ein
Element aus einer Liste kann abgerufen werden, indem man den Index in eckige
Klammern hinter den Listennamen setzt. Es kann sogar mit negative Indices rückwärts
auf die Liste zugegriffen werden, dann ist das letzte Element aber bei −1:

x = ['Timon', 'sagt', 'Hakuna', 'Matata', '!']

x[0]

'Timon'

x[2]

4

5 / 14

'Hakuna'

x[-1]

'!'

Mittels Indizierung kann man die einzelnen Elemente nicht nur ansprechen, sondern
auch verändern, wobei del() genutzt wird um ein Element zu löschen:

x[0] = 'Pumbaa'
x

['Pumbaa', 'sagt', 'Hakuna', 'Matata', '!']

Auch die Elemente in geschachtelten Listen können entsprechend mit zusätzlichen
Indizes angesprochen werden:

x = [['D', 'B', 'Z'], [1, 2]]

x[0]

['D', 'B', 'Z']

x = [['D', 'B', 'Z'], [1, 2]]

x[0][1]

'B'

Slicing
Slicing, also das Ausschneiden einer Teilmenge, funktioniert ähnlich wie die Indizierung,
allerdings kann in den eckigen Klammern die Syntax [start:stop:step] angewendet
werden. Dabei bezeichnet

• start den Index des ersten Elements ab und inklusive dem ausgeschnitten werden
soll (Default = 0)

• stop den Index des letzten Elements bis und exklusive (!) dem ausgeschnitten werden
soll (Default = letztes Element)

5

6 / 14

• step wie of im Ausschnitt Elemente abgetasted werden sollen (Default = 1). Auch hier
kann mit negativen Werten gearbeitet um rückwärts abzutasten.

x = [1, 2, 3, 4, 5]

x[0:3]

[1, 2, 3]

x = [1, 2, 3, 4, 5]

x[0:3:2]

[1, 3]

Lässt man die Werte frei, werden die defaults angewendet:

x = [1, 2, 3, 4, 5]

x[1:]

[2, 3, 4, 5]

x = [1, 2, 3, 4, 5]

x[::2]

[1, 3, 5]

Hinzufügen
Mit list.append() kann ein Element ans Ende einer Liste hinzugefügt werden, während
mit list.insert() ein Element an einer bestimmten Position (=Index; siehe weiter unten)
eingefügt werden kann.

x = [1, 2, 3]

x.append(10)
x # enthält nun 10 am Ende

6

7 / 14

[1, 2, 3, 10]

x = [1, 2, 3]

x.insert(1, 33)
x # enthält nun 33 an Index 1

[1, 33, 2, 3]

Wenn nicht nur ein einzelnes Element, sondern z.B. eine andere Liste zu einer
bestehenden Liste hinzugefügt werden soll, so funktioniert dies entweder schlicht mit
einem + oder mit list.extend(). Der Unterschied ist, dass + eine neue Liste erzeugt,
während list.extend() die bestehende Liste verändert. Wir demonstrieren dies mit Liste
b von oben:

x = [1, 2]
y = ['drei', True]

z = x + y
z

[1, 2, 'drei', True]

x = [1, 2]
y = ['drei', True]

x.extend(y)
x

[1, 2, 'drei', True]

Entfernen
Der Befehle list.clear entfernt alle Elemente aus einer Liste, während list.remove()
(nur!) das erste passende Element aus einer Liste entfernt. Um ein Element an einer
bestimmten Position zu entfernen, kann del() in Kombination mit dem Index (nicht dem
zu entfernenden Wert!) verwendet werden.

x = [1, 2, 3, 2, 1]

7

8 / 14

x.clear()
x

[]

x = [1, 2, 3, 2, 1]

x.remove(2)
x

[1, 3, 2, 1]

x = [1, 2, 3, 2, 1]

del(x[2])
x

[1, 2, 2, 1]

Schließlich sei noch die Funktion list.pop() erwähnt, die stets das letzte Element einer
Liste herauslöst, d.h. in der ursprünglichen Liste entfernt und gleichzeitig zurückgibt:

x = [1, 2, 3]
y = x.pop()

print(y) # y ist nun 3 und

3

print(x) # x enthält 3 nicht mehr

[1, 2]

Verändern
Weitere gebräuchliche Listenfunktionen sind list.sort(), welche die Elemente einer
Liste sortiert, und list.reverse(), welche die Reihenfolge der Elemente umkehrt. Beide
Funktionen verändern die Liste, auf die sie angewendet werden. list.sort() kann auch
mit dem Schlüsselwort reverse = True angewendet werden, um die Liste in umgekehrter
Reihenfolge zu sortieren. Wir nutzen hier die zahlen_liste = [1, 6, 3, 2] von oben.

8

9 / 14

x = [3, 1, 2]

x.reverse()
x

[2, 1, 3]

x = [3, 1, 2]

x.sort()
x

[1, 2, 3]

x = [3, 1, 2]

x.sort(reverse = True)
x

[3, 2, 1]

Prüfen
Es ist oft hilfreich bestimmte Attribute von Listen zu extrahieren bzw. zu prüfen. Die
Länge einer Liste, also die Anzahl der in ihr enthaltenen Elemente, kann mittels len()
ausgegeben werden und wird auch häufig für weitere Operationen benötigt. Ebenso
können die Schlüsselwörter in und not verwendet werden um zu prüfen ob ein Element
bzw. ob ein Element nicht in einer Liste enthalten ist. Schließlich kann auch mittels
list.count() gezählt werden wie oft ein Element in einer Liste enthalten ist.

x = [42, 1, 42]

len(x)

3

x = [42, 1, 42]

42 in x

9

10 / 14

True

x = [42, 1, 42]

42 not in x

False

x = [42, 1, 42]

x.count(42)

2

Gegeben, dass die Liste ausschließlich Zahlen enthält, können auch einfache
Rechenoperationen wie Bestimmung des Maximums, Minimums oder der Summe
durchgeführt werden.

x = [3, 1, 2]

max(x)

3

x = [3, 1, 2]

min(x)

1

x = [3, 1, 2]

sum(x)

6

10

11 / 14

Kopieren
Wie bereits erwähnt, sind Listen in Python mutable Objekte. Natürlich kann es aber auch
gewünscht sein eine Kopie einer Liste zu erzeugen, die eben nicht dauerhaft auf eine
andere Liste verweist, sondern ab dem Moment eine echte, unabhängige Kopie darstellt,
mit der separat weitergearbeitet werden kann. Zumindest bedingt (!) ist dies möglich via
list.copy():

liste1 = [1, 2, 3]
liste2 = liste1
liste2.append(4)

print(liste1)

[1, 2, 3, 4]

print(liste2)

[1, 2, 3, 4]

liste3 = [1, 2, 3]
liste4 = liste3.copy()
liste4.append(4)

print(liste3)

[1, 2, 3]

print(liste4)

[1, 2, 3, 4]

Wie zu sehen wird - im Gegensatz zum Beispiel mit liste1 und liste2 - das Objekt
liste3 eben nicht durch das Anwenden der append() Funktion auf liste4 verändert. Wie
zu erwarten verhält sich liste4 also als unabhängige Kopie von liste3. Dies stimmt
leider wie gesagt nur bedingt, da list.copy() eine sogenannte flache (shallow) Kopie
erzeugt. Dies meint, dass das Erzeugen von unabhängigen Kopien nur auf der obersten
Listen-Ebene erfolgt. Sobald also eine Liste geschachtelt ist und auf den unteren
Ebenen weitere mutable Objekte enthält, sind diese weiterhin nicht unabhängig. Um
auch diese unabhängig zu machen, also eine tiefe (deep) Kopie zu erzeugen, kann die

11

12 / 14

Funktion copy.deepcopy() aus dem copy-Modul verwendet werden. Es folgen drei
Beispiele, die dies verdeutlichen sollen. Die Beispiele mit listeA bis listeD entsprechen
dabei der Vorgehensweise von oben, wobei mit listeF die tiefe Kopie von listeE
erzeugt wird. In allen Fällen wird sowohl ein Element in der obersten Listenebene, als
auch in der Listenebene darunter verändert, sodass sich die Ergebnisse aller drei
Beispiele unterscheiden:

kein extra Modul nötig

listeA = [[1,2], [3,4]]
listeB = listeA
listeB[1].append(5)
listeB.append(6)

print(listeA)

[[1, 2], [3, 4, 5], 6]

print(listeB)

[[1, 2], [3, 4, 5], 6]

kein extra Modul nötig

listeC = [[1,2], [3,4]]
listeD = listeC.copy()
listeD[1].append(5)
listeD.append(6)

print(listeC)

[[1, 2], [3, 4, 5]]

print(listeD)

[[1, 2], [3, 4, 5], 6]

import copy

listeE = [[1,2], [3,4]]

12

13 / 14

listeF = copy.deepcopy(listeE)
listeF[1].append(5)
listeF.append(6)

print(listeE)

[[1, 2], [3, 4]]

print(listeF)

[[1, 2], [3, 4, 5], 6]

 Weitere Ressourcen

• Mutable und Immutable in Python
• Mutable vs Immutable Objects in Python
• Python Tutorial deutsch 14/24 - Einführung in Listen
• Python Tutorial deutsch 15/24 - Zugriff auf Listen
• ALL 11 LIST METHODS IN PYTHON EXPLAINED
• More on Lists

Übungen
Erzeuge drei unterschiedlich lange Listen, deren Länge jeweils identisch zu ihrer
Summe ist. Keine der Listen darf nur aus Einsen bestehen.

• (A) Geschafft

Erzeuge eine Liste, deren Länge, Summe und Maximalwert identisch ist.

• (A) Geschafft

Erstelle ein separates Jupyter Notebook, in welchem du zu Beginn drei Listen mit den
Namen ‘a’, ‘b’ und ‘c’ und einem Inhalt deiner Wahl erstellst. Daraufhin soll jede der in
diesem Kapitel genannten Funktionalitäten mindestens einmal auf mindestens eine der
Listen angewendet werden. Es gilt also alle Methoden/Funktionen nacheinander
anzuwenden, ohne jemals mehr als drei Listen zu verwenden. Diese Übung soll
einerseits die Anwendung der Methoden/Funktionen vertiefen und andererseits die
Veränderung von mutable Listen durch die Methoden/Funktionen verdeutlichen.
Strukturiere das Jupyter Notebook mithilfe von Überschriften und kurzen Erläuterungen
so, dass es für jeden Schritt kurz erläutert was geschieht - ähnlich diesem Kapitel hier.

13

https://youtu.be/DrdYOSjqozc?feature=shared
https://medium.com/@meghamohan/mutable-and-immutable-side-of-python-c2145cf72747
https://youtu.be/ihF8bZoauBs?si=cEvQIRy0tyF0L_4I
https://youtu.be/_XzWPXvya2w?si=ial_ZbV7HKmnPTgs
https://youtu.be/0yySumZTxJ0?si=JHJ0Xt3nJJp-_3Tg
https://docs.python.org/3/tutorial/datastructures.html#more-on-lists

14 / 14

Ziel ist es, dass du dieses Dokument später als Referenz nutzen kannst, falls du dich
mal nicht mehr an diese Methoden erinnern solltest.

• (A) Geschafft

14

	Mutable vs. Immutable
	Mit Listen arbeiten
	Erstellen
	Indizierung
	Slicing
	Hinzufügen
	Entfernen
	Verändern
	Prüfen
	Kopieren

	Übungen

