
1 / 2

Sammlungen
by Woche 2

In Python gibt es vier grundlegende Arten von Sammlungen (Collections):

• Listen
• Tuples
• Sets
• Dictionaries

Alle haben gemeinsam, dass sie mehrere Werte in einer einzigen Variablen speichern
können. Einfach ausgedrückt kann man also beispielsweise von einer Spalte in einer
Tabelle sprechen. Die Unterschiede liegen in der Art und Weise, wie die Werte
gespeichert und abgerufen werden können. Listen sind die am häufigsten verwendete
Art von Sammlungen in Python. Die anderen drei haben spezielle Eigenschaften, die sie
für bestimmte Anwendungsfälle nützlich machen. In den folgenden Kapiteln werden wir
uns jede Art von Sammlung genauer ansehen.

 Hinweis

Die Grundlagen bis hierhin und vor allem diese Kapitel zu den verschiedenen
Sammlungen wirken ggf. etwas zu theoretisch und abstrakt. Es ist klar, dass für eine
bessere Motivation möglichst bald Kapitel kommen sollten, in denen wir mit echten
Daten arbeiten und der praktische Bezug klarer wird. Nichtsdestotrotz ist es wichtig,
diese Grundlagen zu kennen, um später effizient und effektiv mit Python arbeiten zu
können. Es muss nicht alles was nun folgt sofort auswendig gelernt werden, aber
viele der Funktionalitäten oder zumindest ihrer Konzepte werden wir auch später
noch regelmäßig brauchen, sodass es sich lohnt, sich damit auseinanderzusetzen.

Hier ist eine tabellarische Übersicht über die Unterschiede und Anwendungen der vier
Arten von Sammlungen:

Homogenität
Alle vier Arten von Sammlungen müssen nicht homogen sein, was bedeutet, dass sie
Werte unterschiedlicher Datentypen enthalten können. In Python ist es also möglich,
eine Liste zu erstellen, die z.B. sowohl Zahlen als auch Strings enthält. Das gleiche gilt
für Tuples, Sets und Dictionaries und natürlich noch mehr Datentypen.

1

2 / 2

heterogene Sammlungen
liste_het = [1, 'zwei', 3.21]
tuple_het = (1, 'zwei', 3.21)
set_het = {1, 'zwei', 3.21}
dict_het = {1: 1, 'zwei': 2, 'drei': 'drei'}

homogen ist natürlich auch möglich
list_hom = [1, 2, 3]
tuple_hom = (1, 2, 3)
set_hom = {1, 2, 3}
dict_hom = {'eins': 1, 'zwei': 2, 'drei': 3}

Verschachtelung
Alle vier Arten von Sammlungen können auch verschachtelt werden, d.h. eine Liste kann
auch eine Liste enthalten. Da sie auch nicht homogen sein müssen, können sie auch
eine Sammlung enthalten, die eine andere Sammlung enthält, die eine andere
Sammlung enthält, und so weiter.

liste1 = [1, 2, 3]
liste2 = [1, [2, 3], 4]
liste3 = [1, [2, 3], 4, [[5, 6], 7]]
tuple1 = ({1}, (2, 3), liste3)

print(tuple1)

({1}, (2, 3), [1, [2, 3], 4, [[5, 6], 7]])

Es gibt allerdings eine Einschränkung bzgl. der Verschachtelung von Sammlungstypen.
Listen und Tuples können problemlos andere Sammlungen enthalten, einschließlich
anderer Listen, Tuples, Sets und Dictionaries. Sets und Dictionaries hingegen können
nur immutable Datentypen enthalten, d.h. keine Listen, Sets oder Dictionaries.

Bei den anderen in der Tabelle aufgeführten Aspekten unterscheidet sich immer
mindestens ein Typ Sammlung von den anderen, sodass wir dies in den folgenden
Unterkapiteln genauer betrachten werden.

2

	Homogenität
	Verschachtelung

