
1 / 12

Sets
by Woche 2

Der dritte Typ von Sammlungen in Python sind Sets. Auch Sets sind Listen sehr ähnlich:
Sie sind nicht homogen, Verschachtelungen sind möglich und sie sind mutable. Sets
unterscheiden sich aber auch von Listen: Sie sind nicht geordnet, erlauben keine
Duplikate und werden mit geschweiften Klammern {} erstellt.

Arbeiten mit Sets
Erstellen
Sets können prinzipiell auf die gleiche Weise wie Listen erstellt werden. Allerdings fällt
hier direkt auf, dass die doppelte 42 beim Erstellen des Sets einfach verschwindet. Das
liegt daran, dass Sets keine Duplikate erlauben.

mein_set = {'Etwas', 42, 'Text', 42, 12.6, True}
mein_set

{True, 'Etwas', 42, 'Text', 12.6}

zahlen_set = {1, 6, 3, 2}
sum(zahlen_set)

12

Listen/Tuples können auch in Sets umgewandelt werden und umgekehrt. Dabei wird die
ursprüngliche Sammlung nicht verändert, sondern eine neue Sammlung erstellt. Das
Umwandeln z.B. einer Liste in ein Set ist auch eine gängige Methode, um Duplikate zu
entfernen.

alle_namen = ['Goku', 'Vegeta', 'Goku', 'Goku', 'Gohan', 'Vegeta']
einzigartige_namen = set(alle_namen)
print(alle_namen)

['Goku', 'Vegeta', 'Goku', 'Goku', 'Gohan', 'Vegeta']

1

2 / 12

print(einzigartige_namen)

{'Goku', 'Vegeta', 'Gohan'}

x = {1, 2, 3}
y = list(x)
print(x)

{1, 2, 3}

print(y)

[1, 2, 3]

Hinzufügen
Anstellen von append() oder insert() wie bei Listen gibt es bei Sets die Methode add().
Diese fügt ein Element hinzu, falls es noch nicht im Set enthalten ist. Falls es bereits
enthalten ist, passiert nichts.

x = {1, 2, 3}
x.add(4)
x

{1, 2, 3, 4}

Entfernen
Anstellen von remove() wie bei Listen gibt es bei Sets die Methoden discard() und
remove(). Diese entfernt ein Element, falls es im Set enthalten ist. Falls es nicht
enthalten ist, passiert nichts. Beide Methoden unterscheiden sich nur darin, dass
remove() einen Fehler wirft, falls das Element nicht enthalten ist, während discard()
dann einfach nichts tut.

x = {1, 2, 3}
x.discard(3)
x

{1, 2}

2

3 / 12

x = {1, 2, 3}
x.discard(4)
x

{1, 2, 3}

x = {1, 2, 3}
x.remove(3)
x

{1, 2}

x = {1, 2, 3}
x.remove(4)
#

Error: 4

Es gibt wie auch bei Listen die Methode pop(). Allerdings wird hier nicht wie bei Listen
immer das letzten Element entfernt, sondern ein zufälliges. Das liegt daran, dass Sets ja
nicht geordnet sind, sodass es sozusagen kein “letztes” Element gibt.

Auch die Methode clear() funktioniert wie bei Listen und entfernt alle Elemente aus
dem Set.

Set-Operationen
Sets haben auch spezielle Methoden, die Listen und Tuples nicht haben. Diese eignen
sich speziell für Mengenoperationen von Daten ohne Duplikate. Set bedeutet im
englischen ja auch “Menge” im mathematischen Sinne. Mengenoperationen sind z.B.
Vereinigung, Schnittmenge und Differenz und ihr Konzept wird beispielsweise bei Venn-
Diagrammen wie diesem hier angesetzt:

3

https://www.wikiwand.com/de/Menge_(Mathematik)
https://www.wikiwand.com/de/Mengendiagramm
https://www.wikiwand.com/de/Mengendiagramm

4 / 12

Die wichtigsten Mengenoperationen werden hier kurz vorgestellt. Es sei darauf
hingewiesen, dass hier immer nur mit zwei Sets (x und y) gearbeitet wird, aber die
Methoden i.d.R. auch mit mehreren Sets funktionieren.

Union (Vereinigung)

Sets können vereinigt werden, d.h. es werden alle Elemente beider Sets in einem neuen
Set zusammengefasst. Das geht entweder via union() oder |.

x = {1, 2}
y = {2, 3}

4

5 / 12

z = x.union(y)

print(x)

{1, 2}

print(y)

{2, 3}

print(z)

{1, 2, 3}

x = {1, 2}
y = {2, 3}

z = x | y

print(x)

{1, 2}

print(y)

{2, 3}

print(z)

{1, 2, 3}

Der Unterschied ist, dass union() auch andere Sammlungen (Listen, Tuples…)
akzeptiert und automatisch in Sets umwandelt, während | nur Sets akzeptiert.

Intersection (Schnittmenge)

5

6 / 12

Sets können auch geschnitten werden, d.h. es werden nur die Elemente in einem neuen
Set zusammengefasst, die in beiden Sets enthalten sind. Das geht entweder via
intersection() oder &.

x = {1, 2}
y = {2, 3}

z = x.intersection(y)

print(x)

{1, 2}

print(y)

{2, 3}

print(z)

{2}

x = {1, 2}
y = {2, 3}

z = x & y

print(x)

{1, 2}

print(y)

6

7 / 12

{2, 3}

print(z)

{2}

Wieder ist der Unterschied, dass intersection() auch andere Sammlungen (Listen,
Tuples…) akzeptiert und automatisch in Sets umwandelt, während & nur Sets akzeptiert.
Oft reicht bereits die Information, ob es überhaupt Elemente in der Schnittmenge gibt,
und nicht die Schnittmenge selbst. Für diesen Fall gibt es die Methode isdisjoint(), die
True zurückgibt, falls keine Elemente in der Schnittmenge sind.

x = {1, 2}
y = {2, 3}

x.isdisjoint(y)

False

x = {1, 2}
y = {3, 4}

x.isdisjoint(y)

True

Difference

Sets können auch voneinander abgezogen werden, d.h. es werden nur die Elemente in
einem neuen Set zusammengefasst, die in einem Set enthalten sind, aber nicht im
anderen. Das geht entweder via difference() oder -.

7

8 / 12

x = {1, 2}
y = {2, 3}

z = x.difference(y)

print(x)

{1, 2}

print(y)

{2, 3}

print(z)

{1}

x = {1, 2}
y = {2, 3}

z = x - y

print(x)

{1, 2}

print(y)

{2, 3}

print(z)

{1}

Symmetric Difference

8

9 / 12

Sets können auch symmetrisch voneinander abgezogen werden, d.h. es werden nur die
Elemente in einem neuen Set zusammengefasst, die in einem Set enthalten sind, aber
nicht im anderen. Das geht entweder via symmetric_difference() oder ^.

x = {1, 2}
y = {2, 3}

z = x.symmetric_difference(y)

print(x)

{1, 2}

print(y)

{2, 3}

print(z)

{1, 3}

x = {1, 2}
y = {2, 3}

z = x ^ y

print(x)

{1, 2}

print(y)

9

10 / 12

{2, 3}

print(z)

{1, 3}

Subset/Superset

Schließlich kann es auch von Interesse sein zu prüfen ob ein Set ein Subset (Teilmenge)
oder Superset (Obermenge) eines anderen Sets ist. Das geht entweder via issubset()
oder </<= bzw. issuperset() oder >/>=.

x = {1}
y = {1, 2}

print(x.issubset(y))

True

print(x <= y)

True

print(x < y)

True

x = {1, 2}
y = {1, 2}

print(x.issubset(y))

True

print(x <= y)

10

11 / 12

True

print(x < y)

False

x = {1, 2}
y = {1, 2}

print(x.issuperset(y))

True

print(x >= y)

True

print(x > y)

False

x = {1, 2}
y = {1}

print(x.issuperset(y))

True

print(x >= y)

True

print(x > y)

True

11

12 / 12

Übungen
Erzeuge dir folgende Liste: liste = ['BMW', 'Audi', 'Mercedes', 'VW', 'Porsche',
'Audi', 'BMW']. Nutze die Funktionalität von Sets, um die Liste durch Umwandlung in
ein Set von Duplikaten zu befreien. Sorge danach dafür, dass das Ergebnis aber wieder
in einer Liste (und nicht eine Set) vorliegt und alphabetisch sortiert ist.

• (A) Geschafft

Prüfe ob bzw. welche der folgenden Tuples bzgl. ihrer einzigartigen Elemente Subsets
der anderen sind:

id_kunden_alle = (
 536, 731, 844, 226, 463, 60, 649, 242, 893, 364, 773, 509, 536, 548, 248,
104, 816, 479,
 866, 67, 652, 695, 873, 247, 185, 46, 973, 537, 403, 109, 618, 491, 129,
450, 279, 701,
 742, 615, 92, 672, 799, 90, 695, 99, 325, 618, 136, 26, 183, 761, 843,
788, 415, 655,
 202, 203, 354, 411, 727, 131, 513, 120, 631, 202, 603, 312, 104, 635, 880,
823, 126, 471,
 89, 278, 564, 215, 42, 889, 768, 155, 384, 555, 477, 122, 383, 965, 954,
360, 549, 560,
 699, 935, 743, 585, 165, 421, 736, 908, 46, 17
)

id_kunden_positives_feedback = (247, 185, 46, 973, 537, 403, 109, 618, 491,
129, 450, 279, 701,
 742, 615, 92, 672, 799, 90, 695, 99, 325, 618, 136, 26, 183, 761, 843,
788, 415, 655,
 202, 203, 354, 411, 727, 131, 513, 120, 631, 202, 603, 312, 104, 635, 880,
823, 126, 471,
 89, 278, 564, 215, 42, 889, 768, 155, 384, 555, 477, 122, 383, 965, 954,
360, 549, 560,
 699, 935, 743, 585, 165, 421, 736, 247, 185, 46, 973, 537, 403, 247, 185,
46, 973, 537, 403,
 247, 185, 46, 973, 537, 403, 247, 185, 46, 973, 537, 403, 247, 185, 46,
973, 537, 403
)

id_kunden_gekuendigt = (731, 743, 585)

• (A) Geschafft

12

	Arbeiten mit Sets
	Erstellen
	Hinzufügen
	Entfernen
	Set-Operationen
	Union (Vereinigung)
	Intersection (Schnittmenge)
	Difference
	Symmetric Difference
	Subset/Superset

	Übungen

