< BioMath

Sets

by Woche 2

Der dritte Typ von Sammlungen in Python sind Sets. Auch Sets sind Listen sehr &hnlich:
Sie sind nicht homogen, Verschachtelungen sind méglich und sie sind mutable. Sets
unterscheiden sich aber auch von Listen: Sie sind nicht geordnet, erlauben keine
Duplikate und werden mit geschweiften Klammern {} erstellt.

Arbeiten mit Sets
Erstellen

Sets kdnnen prinzipiell auf die gleiche Weise wie Listen erstellt werden. Allerdings fallt
hier direkt auf, dass die doppelte 42 beim Erstellen des Sets einfach verschwindet. Das
liegt daran, dass Sets keine Duplikate erlauben.

mein set = {'Etwas', 42, 'Text',6 42, 12.6, True}
mein set

{True, 'Etwas', 42, 'Text', 12.6}

zahlen set = {1, 6, 3, 2}
sum(zahlen_set)

12

Listen/Tuples kénnen auch in Sets umgewandelt werden und umgekehrt. Dabei wird die
urspriingliche Sammlung nicht verandert, sondern eine neue Sammlung erstellt. Das
Umwandeln z.B. einer Liste in ein Set ist auch eine gangige Methode, um Duplikate zu
entfernen.

alle namen = ['Goku', 'Vegeta', 'Goku', 'Goku', 'Gohan', 'Vegeta'l
einzigartige namen = set(alle_namen)
print(alle_namen)

['Goku', 'Vegeta', 'Goku', 'Goku', 'Gohan', 'Vegeta'l

1/12



< BioMath

print(einzigartige namen)
{'Goku', 'Vegeta', 'Gohan'}

x = {1, 2, 3}
y = list(x)
print(x)

{1, 2, 3}
print(y)
[1, 2, 3]

Hinzufugen

Anstellen von append() oder insert () wie bei Listen gibt es bei Sets die Methode add ().
Diese fugt ein Element hinzu, falls es noch nicht im Set enthalten ist. Falls es bereits
enthalten ist, passiert nichts.

x = {1, 2, 3}
X.add(4)
X

{1, 2, 3, 4}

Entfernen

Anstellen von remove () wie bei Listen gibt es bei Sets die Methoden discard() und
remove (). Diese entfernt ein Element, falls es im Set enthalten ist. Falls es nicht
enthalten ist, passiert nichts. Beide Methoden unterscheiden sich nur darin, dass
remove () einen Fehler wirft, falls das Element nicht enthalten ist, wahrend discard()
dann einfach nichts tut.

x = {1, 2, 3}
x.discard(3)
X

{1, 2}

2/12



) BioMath

x = {1, 2, 3}
X.discard(4)
X

{1, 2, 3}

x = {1, 2, 3}
X.remove(3)
X

{1, 2}

x = {1, 2, 3}
X.remove(4)

Error: 4

Es gibt wie auch bei Listen die Methode pop(). Allerdings wird hier nicht wie bei Listen
immer das letzten Element entfernt, sondern ein zufalliges. Das liegt daran, dass Sets ja
nicht geordnet sind, sodass es sozusagen kein “letztes” Element gibt.

Auch die Methode clear() funktioniert wie bei Listen und entfernt alle Elemente aus
dem Set.

Set-Operationen

Sets haben auch spezielle Methoden, die Listen und Tuples nicht haben. Diese eignen
sich speziell fir Mengenoperationen von Daten ohne Duplikate. Set bedeutet im
englischen ja auch “Menge” im mathematischen Sinne. Mengenoperationen sind z.B.
Vereinigung, Schnittmenge und Differenz und ihr Konzept wird beispielsweise bei Venn-
Diagrammen wie diesem hier angesetzt:

3/12


https://www.wikiwand.com/de/Menge_(Mathematik)
https://www.wikiwand.com/de/Mengendiagramm
https://www.wikiwand.com/de/Mengendiagramm

Die wichtigsten Mengenoperationen werden hier kurz vorgestellt. Es sei darauf
hingewiesen, dass hier immer nur mit zwei Sets (x und y) gearbeitet wird, aber die
Methoden i.d.R. auch mit mehreren Sets funktionieren.

Union (Vereinigung)

Sets kdnnen vereinigt werden, d.h. es werden alle Elemente beider Sets in einem neuen
Set zusammengefasst. Das geht entweder via union() oder |.

{1, 2}
{2, 3}

< BioMath

4/12



z = x.union(y)

print(x)

{1, 2}

print(y)

{2, 3}

print(z)

{1, 2, 3}

X
y

{1, 2}
{2, 3}

z=x1y

print(x)

{1, 2}

print(y)

{2, 3}

print(z)

{1, 2, 3}

Der Unterschied ist, dass union() auch andere Sammlungen (Listen, Tuples...)
akzeptiert und automatisch in Sets umwandelt, wahrend | nur Sets akzeptiert.

Intersection (Schnittmenge)

< BioMath

5/12



< BioMath

Sets kénnen auch geschnitten werden, d.h. es werden nur die Elemente in einem neuen
Set zusammengefasst, die in beiden Sets enthalten sind. Das geht entweder via
intersection() oder &.

X
y

{1, 2}
{2, 3}

z = X.intersection(y)

print(x)

{1, 2}

print(y)

{2, 3}

print(z)

{2}

x = {1, 2}
= {2, 3}

<
|

z=X&vYy

print(x)

{1, 2}

print(y)

6/12



< BioMath

{2, 3}
print(z)

{2}

Wieder ist der Unterschied, dass intersection() auch andere Sammlungen (Listen,
Tuples...) akzeptiert und automatisch in Sets umwandelt, wahrend & nur Sets akzeptiert.
Oft reicht bereits die Information, ob es Uberhaupt Elemente in der Schnittmenge gibt,
und nicht die Schnittmenge selbst. Fir diesen Fall gibt es die Methode isdisjoint(), die
True zuruckgibt, falls keine Elemente in der Schnittmenge sind.

x = {1, 2}
y = {2, 3}

x.isdisjoint(y)

False
x = {1, 2}
y = {3, 4}

X.1isdisjoint(y)

True

Difference

Sets kdnnen auch voneinander abgezogen werden, d.h. es werden nur die Elemente in
einem neuen Set zusammengefasst, die in einem Set enthalten sind, aber nicht im
anderen. Das geht entweder via difference() oder -.

7/12



(7))
<
3
3
@
[y
=.
o
=
%h
@
=
o
®
oo




< BioMath

Sets kénnen auch symmetrisch voneinander abgezogen werden, d.h. es werden nur die
Elemente in einem neuen Set zusammengefasst, die in einem Set enthalten sind, aber
nicht im anderen. Das geht entweder via symmetric_difference() oder ~.

- {11 2}
{2, 3}

X
|

y

z

x.symmetric difference(y)

print(x)

{1, 2}

print(y)

{2, 3}

print(z)

{1, 3}

X
y

{1, 2}
{2, 3}

z=x"y

print(x)

{1, 2}

print(y)

9/12



{2, 3}

print(z)

{1, 3}

Subset/Superset

SchlieRlich kann es auch von Interesse sein zu prifen ob ein Set ein Subset (Teilmenge)
oder Superset (Obermenge) eines anderen Sets ist. Das geht entweder via issubset()
oder </<= bzw. issuperset() oder >/>=.

X
y

{1}
{1,

print(x.

True

print(x

True

print(x

True

{1I
{1,

print(x.

True

print(x

2}

issubset(y))

<=vy)

2}
2}

issubset(y))

<=y)

10

< BioMath

10/12



~
~



Ubungen
Erzeuge dir folgende Liste: liste = ['BMW', 'Audi', 'Mercedes', 'VW', 'Porsche’,
"Audi', 'BMW']. Nutze die Funktionalitat von Sets, um die Liste durch Umwandlung in

ein Set von Duplikaten zu befreien. Sorge danach dafir, dass das Ergebnis aber wieder

in einer Liste (und nicht eine Set) vorliegt und alphabetisch sortiert ist.

* (A) Geschafft

Prife ob bzw. welche der folgenden Tuples bzgl. ihrer einzigartigen Elemente Subsets

der anderen sind:

id _kunden alle = (

536, 731, 844, 226, 463, 60, 649, 242, 893, 364, 773, 509, 536, 548, 248,
104, 816, 479,

866, 67, 652, 695, 873, 247, 185, 46, 973, 537, 403, 109, 618, 491, 129,
450, 279, 701,

742, 615, 92, 672, 799, 90, 695, 99, 325, 618, 136, 26, 183, 761, 843,
788, 415, 655,

202, 203, 354, 411, 727, 131, 513, 120, 631, 202, 603, 312, 104, 635, 880,

823, 126, 471,

89, 278, 564, 215, 42, 889, 768, 155, 384, 555, 477, 122, 383, 965, 954,
360, 549, 560,

699, 935, 743, 585, 165, 421, 736, 908, 46, 17
)

id_kunden positives feedback = (247, 185, 46, 973, 537, 403, 109, 618, 491,
129, 450, 279, 701,

742, 615, 92, 672, 799, 90, 695, 99, 325, 618, 136, 26, 183, 761, 843,
788, 415, 655,

202, 203, 354, 411, 727, 131, 513, 120, 631, 202, 603, 312, 104, 635, 880,

823, 126, 471,

89, 278, 564, 215, 42, 889, 768, 155, 384, 555, 477, 122, 383, 965, 954,
360, 549, 560,

699, 935, 743, 585, 165, 421, 736, 247, 185, 46, 973, 537, 403, 247, 185,
46, 973, 537, 403,

247, 185, 46, 973, 537, 403, 247, 185, 46, 973, 537, 403, 247, 185, 46,
973, 537, 403
)

id kunden gekuendigt = (731, 743, 585)

* (A) Geschafft

12

< BioMath

12/12



	Arbeiten mit Sets
	Erstellen
	Hinzufügen
	Entfernen
	Set-Operationen
	Union (Vereinigung)
	Intersection (Schnittmenge)
	Difference
	Symmetric Difference
	Subset/Superset


	Übungen

