
1 / 4

Tuples
by Woche 2

Der zweite Typ von Sammlungen in Python sind Tuples. Tuples sind Listen sehr ähnlich:
Sie sind nicht homogen, Verschachtelungen sind möglich, sie sind geordnet und können
Duplikate enthalten. Tuples unterscheiden sich aber auch von Listen: Sie sind immutable
und werden mit runden Klammern () erstellt.

Arbeiten mit Tuples
Tuples können prinzipiell auf die gleiche Weise wie Listen erstellt und via indices
behandelt werden. Ebenso können bestimmte Funktionen wie len() und sum() genutzt
werden.

mein_tuple = ('Etwas', 42, 'Text', 42, 12.6, True)
mein_tuple

('Etwas', 42, 'Text', 42, 12.6, True)

zahlen_tuple = (1, 6, 3, 2)
sum(zahlen_tuple[2:])

5

Listen können auch in Tuples umgewandelt werden und umgekehrt. Dabei wird die
ursprüngliche Sammlung nicht verändert, sondern eine neue Sammlung erstellt.

x = [1, 2, 3]
y = tuple(x)
print(x)

[1, 2, 3]

print(y)

(1, 2, 3)

1

2 / 4

x = (1, 2, 3)
y = list(x)
print(x)

(1, 2, 3)

print(y)

[1, 2, 3]

Immutable
Der markante Unterschied zu Listen ist, dass Tuples immutable sind. Demzufolge haben
Tuples auch keine Methoden wie append(), remove(), del() oder pop(), da diese
Methoden die Sammlung verändern würden.

Füge ein Element hinzu
x = (1, 2, 3)
x.append(4)

Error: 'tuple' object has no attribute 'append'

Lösche das erste Element
x = (1, 2, 3)
del(x[0])

Error: 'tuple' object doesn't support item deletion

Wenn man aber doch einen Tuple um Werte erweitern möchte oder bestimmte Werte
löschen möchte, kann man das tun, indem man eine veränderte Kopie des Tuples
erstellt. Man kann dann auch die alte Version mit der neuen überschreiben. Der +
Operator funktioniert in diesem Fall genauso wie bei Listen und mittels Indizierung kann
auch ein Slice des Tuples erstellt werden.

Füge ein Element hinzu
x = (1, 2, 3)
x = x + (4,)
x

2

3 / 4

(1, 2, 3, 4)

Lösche das erste Element
x = (1, 2, 3)
x = x[1:]
x

(2, 3)

 Hinweis

Um einen Tupel mit nur einem Element zu erstellen, muss ein Komma hinter dem
Element stehen. Andernfalls wird das Element als normaler Wert - also nicht als
Tupel - interpretiert. Deshalb steht im Code oben (4,) anstatt (4). Um es noch
verwirrender zu machen: In diesem Fall würde sogar 4,, also ohne Klammern,
ausreichen. Meines Erachtens ist das aber nicht so intuitiv und sollte deshalb
vermieden werden.

Vorteil zu Listen
Ein Vorteil von Tuples gegenüber Listen ist, dass sie weniger Speicherplatz einnehmen
und schneller erzeugbar sind. Grund dafür ist eben, dass sie immutable sind. Hier zum
Beweis ein kleiner Performance-Test: Mittels der Funktion timeit() aus dem
gleichnamigen Modul wird die Zeit in Sekunden gemessen, die benötigt wird, um
10.000.000 Mal eine Liste bzw. ein Tuple zu erstellen.

import timeit

timeit.timeit(
 stmt = 'x = [1, "two", True]',
 number = 10000000
)

0.16691379999974743

#

timeit.timeit(
 stmt = 'x = (1, "two", True)',

3

4 / 4

 number = 10000000
)

0.04501359997084364

 Weitere Ressourcen

• why are TUPLES even a thing?
• Python Tutorial #21 (deutsch) - Tuple
• 5.3. Tuples and Sequences

Übungen
Tuples sind

• (A) Mutable
• (B) Immutable

Öffne dein Jupyter Notebook aus den Übungen im letzten Kapitel zu den Listen und
speichere es als Kopie des ursprünglichen ab. Erzeuge in dieser zweiten Version neben
den Listen ‘a’, ‘b’ und ‘c’ auch Tuple ‘x’, ‘y’ und ‘z’ mit gleichem Inhalt. Versuche dann die
gleichen Operationen auf den Tuples durchzuführen, die du auf den Listen durchgeführt
hast. Wie oben erklärt, wird dies in einigen Fällen nicht direkt möglich sein, da gewisse
Funktionen nicht zur Verfügung stehen. Versuche aber trotzdem - mithilfe von
entsprechenden alternativen Vorgehensweisen - die gleichen Ergebnisse zu erzielen.
Strukturiere das Jupyter Notebook mithilfe von Überschriften und kurzen Erläuterungen
so, dass es für jeden Schritt eine Gegenüberstellung der Vorgehensweisen zwischen
Listen und Tuple gibt. Ziel ist es, dass du dieses Dokument später als Referenz nutzen
kannst, falls du dich mal nicht mehr an die Unterschiede erinnern solltest.

• (A) Geschafft

4

https://youtu.be/fR_D_KIAYrE?si=xsgVC1jBoqgRCIAu
https://youtu.be/sRQeACJYZXE?si=a7QPVvQpcHSmH22x
https://docs.python.org/3/tutorial/datastructures.html#tuples-and-sequences

	Arbeiten mit Tuples
	Immutable

	Vorteil zu Listen
	Übungen

