
1 / 9

If-Else & Loops
by Woche 3

Ein grundlegendes Konzept in der Programmierung sind Kontrollstrukturen und Loops
(Schleifen). In diesem Kapitel werden wir uns daher mit if-else-Anweisungen und den
for und while Loops beschäftigen.

If-Else Anweisungen
Die if-else-Anweisung ermöglicht es uns, Entscheidungen zu treffen und Code nur
dann auszuführen, wenn eine bestimmte Bedingung erfüllt ist.

if
Tatsächlich reicht auch ein if-Block aus, um eine Entscheidung zu treffen. Wichtig zu
beachten ist, dass der Code, der innerhalb des if-Blocks steht, eingerückt sein muss
und zwar um vier Leerzeichen oder ein Tab. Um dies besonders deutlich zu machen,
sind im folgenden Code zwei print()-Statements: Nur das eine ist eingerückt und
gehört somit zum if-Block.

x = 10

if x < 5:
 print("x ist kleiner als 5")
print("Ich werde immer geprintet")

Ich werde immer geprintet

x = 3

if x < 5:
 print("x ist kleiner als 5")
print("Ich werde immer geprintet")

x ist kleiner als 5
Ich werde immer geprintet

1

2 / 9

else
Optional kann auch ein else-Block angehängt werden, der ausgeführt wird, wenn die
Bedingung im if-Block nicht erfüllt ist. Der else-Block wird ebenfalls eingerückt und
zwar auf der gleichen Ebene wie der if-Block.

x = 10

if x < 5:
 print("x ist kleiner als 5")
else:
 print("x ist größer oder gleich 5")

x ist größer oder gleich 5

x = 3

if x < 5:
 print("x ist kleiner als 5")
else:
 print("x ist größer oder gleich 5")

x ist kleiner als 5

elif
Schließlich kann auch ein elif-Block genutzt werden. Dies ist dann sinnvoll, wenn
nacheinander mehrere Bedingungen geprüft werden sollen. Der elif-Block wird
ebenfalls auf die gleiche Ebene wie der if-Block eingerückt.

x = 10

if x < 5:
 print("x ist kleiner als 5")
elif x == 5:
 print("x ist gleich 5")
else:
 print("x ist größer als 5")

x ist größer als 5

x = 5

2

3 / 9

if x < 5:
 print("x ist kleiner als 5")
elif x == 5:
 print("x ist gleich 5")
else:
 print("x ist größer als 5")

x ist gleich 5

x = 3

if x < 5:
 print("x ist kleiner als 5")
elif x == 5:
 print("x ist gleich 5")
else:
 print("x ist größer als 5")

x ist kleiner als 5

Loops
Loops (Schleifen) sind ein weiteres grundlegendes Konzept in der Programmierung. Sie
ermöglichen es, Code mehrmals auszuführen. In Python gibt es zwei Arten von Loops:
for und while.

for
Der for-Loop wird genutzt, um sequenziell durch Elemente einer iterierbaren Sammlung,
wie beispielsweise einer Liste oder einem String, zu gehen. Eine solche Sammlung wird
auch als Sequenz bezeichnet. Eine Sequenz kann als eine geordnete Reihe von
Elementen definiert werden, wobei jedes Element einen bestimmten Platz in dieser
Reihenfolge hat. Beispielsweise besteht ein String aus einer Sequenz von Buchstaben
in einer bestimmten Reihenfolge. Die for-Schleife ermöglicht es, für jedes Element in
dieser Sequenz eine bestimmte Aktion oder einen Block von Code auszuführen. Diesen
Prozess nennt man Iteration. Der Begriff ‘Iterieren’ bedeutet, jedes Element in der
Sequenz einzeln zu durchlaufen, wobei bei jedem Durchgang der Schleife der
Codeblock, der innerhalb der Schleife definiert ist, ausgeführt wird. Der Codeblock wird
für jedes Element der Sequenz einmal ausgeführt und ist durch Einrückung kenntlich
gemacht. Obwohl es üblich ist, i als Namen für die Variable zu verwenden, die den
aktuellen Wert während der Iteration hält, kann dafür tatsächlich jeder beliebige Name
verwendet werden.

3

4 / 9

liste = [1, 2, 3, 4, 5]

for i in liste:
 print(i)

1
2
3
4
5

alle_jahre = [2022, 2023, 2024]

for jahr in alle_jahre:
 print(f"Frohes neues Jahr {jahr}!")

Frohes neues Jahr 2022!
Frohes neues Jahr 2023!
Frohes neues Jahr 2024!

Hinweis: Was es mit dem f vor dem String und den geschweiften Klammern auf sich hat,
wird in einem späteren Kapitel erklärt.

while
Der while-Loop wird benutzt, um Code so lange auszuführen, wie eine Bedingung erfüllt
ist. Der Code, der bei jeder Iteration ausgeführt werden soll ist auch wieder eingerückt.
Es ist wichtig, dass die Bedingung irgendwann nicht mehr erfüllt ist, da der Loop sonst
unendlich lange ausgeführt wird. Meines Erachtens wird der while-Loop im Bereich Data
Analytics nur sehr selten genutzt, soll hier aber wenigstens einmalig vorgestellt werden.
Hier wird also zu Beginn Variable x auf 0 gesetzt. Im Loop wird der Wert der Variable
geprintet und dann um 1 erhöht. Der Loop wird solange ausgeführt, bis x größer oder
gleich 5 ist.

x = 0

while x < 5:
 print(x)
 x += 1

0
1
2

4

5 / 9

3
4

List Comprehension
List Comprehension ist eine Technik in Python, die zumindest für spezifische
Anwendungsfälle die Nutzung von Loops vereinfachen kann - nämlich wenn Listen
erstellt werden sollen. Die Syntax ist dabei sehr kompakt und besteht aus einer
Kombination von eckigen Klammern und einem Loop. Als Beispiel wollen wir hier
folgendes einmal mit einem Standard Loop und einmal mit List Comprehension tun: Für
die Werte 1-5 sollen die Quadratzahlen berechnet werden.

Liste mit Loop
x = range(1, 6)
y = []

for i in x:
 y.append(i**2)

print(x)
print(y)

range(1, 6)
[1, 4, 9, 16, 25]

Liste mit List Comprehension
x = range(1, 6)
y = [i**2 for i in x]

print(x)
print(y)

range(1, 6)
[1, 4, 9, 16, 25]

Es wird direkt offensichtlich, dass der Code mit List Comprehension deutlich kürzer ist.
Beim Betrachten des Codes wird auch klar, dass die List Comprehension recht intuitiv
ist. Die eckigen Klammern geben an, dass eine Liste erstellt wird. Dies allein spart uns
schon den Schritt vorher eine leere Liste y vorzubereiten, die dann im Loop
mittels .append() befüllt werden kann. Innerhalb der eckigen Klammern steht dann der
Loop, der die Werte für die Liste generiert. In diesem Fall ist es for i in x, also
derselbe Ausdruck wie beim Standardloop. Anstatt aber noch eine Zeile zu benötigen,

5

6 / 9

um die Liste zu erstellen, wird hier direkt vor dem Loop die Berechnung für die Liste
angegeben.

List Comprehension kann aber sogar noch mehr. So können auch Bedingungen in die
List Comprehension eingebaut werden. Hier wird z.B. eine Liste erstellt, die nur die
positive Zahlen aus einer anderen Liste enthält. Der Ansatz ist wie eben, nur das i nicht
quadriert wird, aber stattdessen nach dem Loop noch ein if Ausdruck ergänzt wurde.

x = [1, -2, 3, -4, 5]
y = [i for i in x if i > 0]

print(x)
print(y)

[1, -2, 3, -4, 5]
[1, 3, 5]

Die generelle Schreibweise einer List Comprehension ist also:

neue_liste = [AUSDRUCK for ELEMENT in SAMMLUNG if BEDINGUNG == True]

Dabei steht

• AUSDRUCK für die Berechnung, die für jedes Element in der Liste durchgeführt
werden soll.

• ELEMENT für das aktuelle Element in der Liste.
• SAMMLUNG für die Liste (oder Tuple, Set, Dictionairy, …)¹, über die iteriert werden

soll.
• BEDINGUNG für eine Bedingung, die das aktuelle Element erfüllen muss, um in die

neue Liste aufgenommen zu werden.

Dabei ist der AUSDRUCK flexibler als man vielleicht denken mag. Die beiden
vorangegangenen Beispiele haben bisher nur das ELEMENT selbst (i) zurückgegeben,
oder es aber quadriert (i**2). Tatsächlich kann aber auch schlichtweg ein Wert
zurückgegeben werden, der nichts mit dem ELEMENT zu tun hat. So könnte z.B. auch
42 zurückgegeben werden, wenn das ELEMENT größer als 0 ist. Oder aber man
schreibt in den AUSDRUCK selbst noch eine if-else Bedingung hinein:

¹Streng genommen muss es sich bei der SAMMLUNG nicht zwangsläufig um eine Sammlung im
herkömmlichen Sinn handeln. Entscheidend ist, dass das Objekt die Methoden __iter__ und __next__
implementiert, wodurch es das Iterator-Protokoll erfüllt. Dies ermöglicht es der for-Schleife, über das
Objekt zu iterieren. Viele der eingebauten Datentypen in Python, wie Listen, Tupel, Sets und
Dictionaries, erfüllen diese Anforderung. Ein praktisches Beispiel hierfür ist die Verwendung von
range(5), das zwar keine Sammlung von Zahlen im Speicher anlegt, aber dennoch iterierbar ist, da es
die erforderlichen Methoden implementiert.

6

7 / 9

x = [1, -2, 3, -4, 5]
y = [42 for i in x]

print(x)
print(y)

[1, -2, 3, -4, 5]
[42, 42, 42, 42, 42]

x = [1, -2, 3, -4, 5]
y = [i if i < 0 else i*100 for i in x]

print(x)
print(y)

[1, -2, 3, -4, 5]
[100, -2, 300, -4, 500]

 Weitere Ressourcen

• Python Tutorial deutsch 10/24 - Die if Anweisung
• Python Tutorial deutsch 11/24 - if-Anweisung mit elif- und else-Zweigen erweitern
• Python Tutorial deutsch 16/24 - Die for Schleife
• Python Tutorial deutsch 17/24 - for Schleife als Zählerschleife verwenden
• Python Tutorial #16 | List Comprehension | Deutsch

Übungen
Was wird geprintet?

if 2+5==7:
 print("Data")
print("Analytics")

• (A) Data
• (B) Data Analytics
• (C) Analytics
• (D) nichts

Was wird geprintet?

7

https://youtu.be/b6KzYbM-Hvg?si=VVMHdJloqxHsE-Ht
https://youtu.be/f3YdEdYSNdk?si=w6Zv4-6mmmrmZSVA
https://youtu.be/ISo1uqLcVw8?si=Km775fMu3dmAgw0R
https://youtu.be/pQh5Idw2sKM?si=BkAN2P3CRCLeV1wS
https://youtu.be/sZ5uUASVDEU?si=TkyMm99oI61v_X9x

8 / 9

if True or False:
 print("Data")

• (A) Data
• (B) nichts

Welchen Wert hat x am Ende?

x = 25

if x > 15:
 x = 10
elif x < 20:
 x = 5
else:
 x = 0

while x < 20:
 x += 1

x = x**2

x ist ___

Schreibe für alle List Comprehensions, die oben gezeigt wurden auch Code, der das
selbe Ergebnis mit einem Standard Loop erzielt.

• (A) Geschafft

Nutze List Comprehension um basierend auf dieser Liste zahlen = list(range(1, 21))
eine neue Liste zu erstellen, die nur gerade Zahlen enthält. Hinweis: Um zu prüfen ob
eine Zahl i gerade ist, kann i % 2 == 0² als BEDINGUNG genutzt werden.

• (A) Geschafft

Nun soll die List Comprehension aus der vorigen Übung noch erweitert werden. Anstatt
einfach die geraden Zahlen zu behalten, sollen die Wurzeln aus den geraden Zahlen in
die neue Liste eingehen.

• (A) Geschafft

Schließlich soll die List Comprehension aus der vorigen Übung nochmals erweitert
werden. Es sollen weiterhin die Wurzeln gezogen werden, allerdings soll dann noch 3

²Die Bedingung i % 2 == 0 wird verwendet, um zu überprüfen, ob eine Zahl i gerade ist. In der
Mathematik bedeutet der Operator % Modulo und gibt den Rest einer Division zurück. Wenn eine Zahl
durch 2 geteilt wird und der Rest 0 ist, bedeutet dies, dass die Zahl ohne Rest durch 2 teilbar ist, was sie
zu einer geraden Zahl macht. Anders gesagt, gerade Zahlen sind immer vollständig in Zweier-Schritte
teilbar, was durch i % 2 == 0 überprüft wird.

8

9 / 9

addiert werden. Außerdem soll das nicht für alle geraden Zahlen gemacht werden,
sondern nur für die, die größer als 10 sind. Die BEDINGUNG enthält also zwei
Bedingungen, die beide erfüllt sein müssen.

• (A) Geschafft

9

	If-Else Anweisungen
	if
	else
	elif

	Loops
	for
	while

	List Comprehension
	Übungen

