If-Else & Loops

by Woche 3

Ein grundlegendes Konzept in der Programmierung sind Kontrollstrukturen und Loops
(Schleifen). In diesem Kapitel werden wir uns daher mit if-else-Anweisungen und den
for und while Loops beschaftigen.

If-Else Anweisungen

Die if-else-Anweisung ermoglicht es uns, Entscheidungen zu treffen und Code nur
dann auszufiuihren, wenn eine bestimmte Bedingung erfullt ist.

if

Tatsachlich reicht auch ein if-Block aus, um eine Entscheidung zu treffen. Wichtig zu
beachten ist, dass der Code, der innerhalb des if-Blocks steht, eingertickt sein muss
und zwar um vier Leerzeichen oder ein Tab. Um dies besonders deutlich zu machen,
sind im folgenden Code zwei print ()-Statements: Nur das eine ist eingertckt und
gehort somit zum if-Block.

X = 10
if x < 5:

print("x ist kleiner als 5")
print("Ich werde immer geprintet")

Ich werde immer geprintet

X =3

if x < 5:
print("x ist kleiner als 5")
print("Ich werde immer geprintet")

x ist kleiner als 5
Ich werde immer geprintet

< BioMath

else

Optional kann auch ein else-Block angehangt werden, der ausgefiihrt wird, wenn die
Bedingung im if-Block nicht erflillt ist. Der else-Block wird ebenfalls eingerickt und
zwar auf der gleichen Ebene wie der if-Block.

X = 10

if x < 5:
print("x ist kleiner als 5")
else:
print("x ist groBer oder gleich 5")

X ist groBer oder gleich 5

X =3

if x < 5:
print("x ist kleiner als 5")
else:
print("x ist groBer oder gleich 5")

x ist kleiner als 5

elif
Schlieflich kann auch ein elif-Block genutzt werden. Dies ist dann sinnvoll, wenn

nacheinander mehrere Bedingungen geprift werden sollen. Der elif-Block wird
ebenfalls auf die gleiche Ebene wie der if-Block eingerickt.

x = 10
if x < 5:

print("x ist kleiner als 5")
elif x == 5:

print("x ist gleich 5")
else:

print("x ist groRBer als 5")

x ist gréBer als 5

< BioMath

2/9

) BioMath

if x < 5:

print("x ist kleiner als 5")
elif x == 5:

print("x ist gleich 5")
else:

print("x ist grofer als 5")

x ist gleich 5

X =3
if x < 5:

print("x ist kleiner als 5")
elif x ==

print("x ist gleich 5")
else:

print("x ist grofer als 5")

x ist kleiner als 5

Loops

Loops (Schleifen) sind ein weiteres grundlegendes Konzept in der Programmierung. Sie
ermdglichen es, Code mehrmals auszufuhren. In Python gibt es zwei Arten von Loops:
for und while.

for

Der for-Loop wird genutzt, um sequenziell durch Elemente einer iterierbaren Sammlung,
wie beispielsweise einer Liste oder einem String, zu gehen. Eine solche Sammlung wird
auch als Sequenz bezeichnet. Eine Sequenz kann als eine geordnete Reihe von
Elementen definiert werden, wobei jedes Element einen bestimmten Platz in dieser
Reihenfolge hat. Beispielsweise besteht ein String aus einer Sequenz von Buchstaben
in einer bestimmten Reihenfolge. Die for-Schleife ermdglicht es, fur jedes Element in
dieser Sequenz eine bestimmte Aktion oder einen Block von Code auszufiuihren. Diesen
Prozess nennt man Iteration. Der Begriff ‘Iterieren’ bedeutet, jedes Element in der
Sequenz einzeln zu durchlaufen, wobei bei jedem Durchgang der Schleife der
Codeblock, der innerhalb der Schleife definiert ist, ausgefiihrt wird. Der Codeblock wird
fur jedes Element der Sequenz einmal ausgefuhrt und ist durch Einrickung kenntlich
gemacht. Obwohl es Ublich ist, i als Namen fiir die Variable zu verwenden, die den
aktuellen Wert wahrend der Iteration halt, kann daflr tatsachlich jeder beliebige Name
verwendet werden.

3/9

) BioMath

liste = [1, 2, 3, 4, 5]

for i in liste:
print(i)

u s WN R

alle jahre = [2022, 2023, 2024]

for jahr in alle_jahre:
print(f"Frohes neues Jahr {jahr}!")

Frohes neues Jahr 2022!
Frohes neues Jahr 2023!
Frohes neues Jahr 2024!

Hinweis: Was es mit dem f vor dem String und den geschweiften Klammern auf sich hat,
wird in einem spateren Kapitel erklart.

while

Der while-Loop wird benutzt, um Code so lange auszuflihren, wie eine Bedingung erfullt
ist. Der Code, der bei jeder Iteration ausgeflihrt werden soll ist auch wieder eingerickt.
Es ist wichtig, dass die Bedingung irgendwann nicht mehr erfullt ist, da der Loop sonst
unendlich lange ausgefuhrt wird. Meines Erachtens wird der while-Loop im Bereich Data
Analytics nur sehr selten genutzt, soll hier aber wenigstens einmalig vorgestellt werden.
Hier wird also zu Beginn Variable x auf 0 gesetzt. Im Loop wird der Wert der Variable
geprintet und dann um 1 erhdht. Der Loop wird solange ausgefiihrt, bis x groRer oder
gleich 5 ist.

X =0
while x < 5:

print(x)
x +=1

[

4/9

) BioMath

List Comprehension

List Comprehension ist eine Technik in Python, die zumindest fir spezifische
Anwendungsfalle die Nutzung von Loops vereinfachen kann - namlich wenn Listen
erstellt werden sollen. Die Syntax ist dabei sehr kompakt und besteht aus einer
Kombination von eckigen Klammern und einem Loop. Als Beispiel wollen wir hier
folgendes einmal mit einem Standard Loop und einmal mit List Comprehension tun: Fur
die Werte 1-5 sollen die Quadratzahlen berechnet werden.

X range(1l, 6)
y =[]

for i in x:
y.append (i**2)

print(x)

print(y)

range(1l, 6)
[1, 4, 9, 16, 25]

X range(1l, 6)
y = [i**2 for i in x]

print(x)
print(y)

range(1l, 6)
[1, 4, 9, 16, 25]

Es wird direkt offensichtlich, dass der Code mit List Comprehension deutlich kirzer ist.
Beim Betrachten des Codes wird auch klar, dass die List Comprehension recht intuitiv
ist. Die eckigen Klammern geben an, dass eine Liste erstellt wird. Dies allein spart uns
schon den Schritt vorher eine leere Liste y vorzubereiten, die dann im Loop

mittels .append() befillt werden kann. Innerhalb der eckigen Klammern steht dann der
Loop, der die Werte fUr die Liste generiert. In diesem Fall ist es for i in x, also
derselbe Ausdruck wie beim Standardloop. Anstatt aber noch eine Zeile zu benétigen,

5/9

um die Liste zu erstellen, wird hier direkt vor dem Loop die Berechnung fir die Liste
angegeben.

List Comprehension kann aber sogar noch mehr. So kénnen auch Bedingungen in die
List Comprehension eingebaut werden. Hier wird z.B. eine Liste erstellt, die nur die
positive Zahlen aus einer anderen Liste enthalt. Der Ansatz ist wie eben, nur das i nicht
quadriert wird, aber stattdessen nach dem Loop noch ein if Ausdruck erganzt wurde.

X = [11 '21 3! _41 5]
y [1i for 1 in x if i > 0]

print(x)
print(y)

[11 '21 3! '41 5]
[1, 3, 5]

Die generelle Schreibweise einer List Comprehension ist also:
neue_liste = [AUSDRUCK for ELEMENT in SAMMLUNG if BEDINGUNG == Truel]
Dabei steht

+ AUSDRUCK fir die Berechnung, die fur jedes Element in der Liste durchgefiihrt
werden soll.

* ELEMENT flr das aktuelle Element in der Liste.

+ SAMMLUNG fir die Liste (oder Tuple, Set, Dictionairy, ...)", Uber die iteriert werden
soll.

+ BEDINGUNG fur eine Bedingung, die das aktuelle Element erfullen muss, um in die
neue Liste aufgenommen zu werden.

Dabei ist der AUSDRUCK flexibler als man vielleicht denken mag. Die beiden
vorangegangenen Beispiele haben bisher nur das ELEMENT selbst (i) zurlickgegeben,
oder es aber quadriert (1**2). Tatsachlich kann aber auch schlichtweg ein Wert
zurtickgegeben werden, der nichts mit dem ELEMENT zu tun hat. So kénnte z.B. auch
42 zuruckgegeben werden, wenn das ELEMENT groRer als 0 ist. Oder aber man
schreibt in den AUSDRUCK selbst noch eine if-else Bedingung hinein:

'Streng genommen muss es sich bei der SAMMLUNG nicht zwangslaufig um eine Sammlung im
herkdmmlichen Sinn handeln. Entscheidend ist, dass das Objekt die Methoden iter und next
implementiert, wodurch es das Iterator-Protokoll erfillt. Dies ermdglicht es der for-Schleife, iber das
Objekt zu iterieren. Viele der eingebauten Datentypen in Python, wie Listen, Tupel, Sets und
Dictionaries, erflllen diese Anforderung. Ein praktisches Beispiel hierfir ist die Verwendung von
range(5), das zwar keine Sammlung von Zahlen im Speicher anlegt, aber dennoch iterierbar ist, da es
die erforderlichen Methoden implementiert.

) BioMath

6/9

< BioMath

X
y

[11 _21 31 '4, 5]
[42 for i in Xx]

print(x)
print(y)

[lr '21 3! '41 5]
[42, 42, 42, 42, 42]

X = [1I '21 31 '41 5]

y = [1i if i < 0 else i*100 for i in x]
print(x)

print(y)

[11 -21 3! '4, 5]
[100, -2, 300, -4, 500]

© Weitere Ressourcen

* Python Tutorial deutsch 10/24 - Die if Anweisung

» Python Tutorial deutsch 11/24 - if-Anweisung mit elif- und else-Zweigen erweitern
» Python Tutorial deutsch 16/24 - Die for Schleife

* Python Tutorial deutsch 17/24 - for Schleife als Zahlerschleife verwenden

» Python Tutorial #16 | List Comprehension | Deutsch

Ubungen

Was wird geprintet?

if 2+5==7:
print("Data")
print("Analytics")

* (A) Data

» (B) Data Analytics
* (

(

C) Analytics
D) nichts

Was wird geprintet?

7/9

https://youtu.be/b6KzYbM-Hvg?si=VVMHdJloqxHsE-Ht
https://youtu.be/f3YdEdYSNdk?si=w6Zv4-6mmmrmZSVA
https://youtu.be/ISo1uqLcVw8?si=Km775fMu3dmAgw0R
https://youtu.be/pQh5Idw2sKM?si=BkAN2P3CRCLeV1wS
https://youtu.be/sZ5uUASVDEU?si=TkyMm99oI61v_X9x

) BioMath

if True or False:
print("Data")

* (A) Data
* (B) nichts

Welchen Wert hat x am Ende?
X = 25

if x > 15:

x = 10
elif x < 20:
X =5

else:
X =0

while x < 20:
x +=1

X = Xx**2

xist

Schreibe fir alle List Comprehensions, die oben gezeigt wurden auch Code, der das
selbe Ergebnis mit einem Standard Loop erzielt.

* (A) Geschafft

Nutze List Comprehension um basierend auf dieser Liste zahlen = list(range(1, 21))
eine neue Liste zu erstellen, die nur gerade Zahlen enthalt. Hinweis: Um zu prifen ob
eine Zahl i gerade ist, kann i % 2 == 02 als BEDINGUNG genutzt werden.

* (A) Geschafft

Nun soll die List Comprehension aus der vorigen Ubung noch erweitert werden. Anstatt
einfach die geraden Zahlen zu behalten, sollen die Wurzeln aus den geraden Zahlen in
die neue Liste eingehen.

* (A) Geschafft

SchlieRlich soll die List Comprehension aus der vorigen Ubung nochmals erweitert
werden. Es sollen weiterhin die Wurzeln gezogen werden, allerdings soll dann noch 3

2Die Bedingung i % 2 == 0 wird verwendet, um zu Uberprifen, ob eine Zahl i gerade ist. In der
Mathematik bedeutet der Operator s Modulo und gibt den Rest einer Division zurlick. Wenn eine Zahl
durch 2 geteilt wird und der Rest 0 ist, bedeutet dies, dass die Zahl ohne Rest durch 2 teilbar ist, was sie
zu einer geraden Zahl macht. Anders gesagt, gerade Zahlen sind immer vollstandig in Zweier-Schritte
teilbar, was durch i % 2 == 0 Uberprift wird.

8/9

) BioMath

addiert werden. AuRerdem soll das nicht fur alle geraden Zahlen gemacht werden,
sondern nur fir die, die gréRer als 10 sind. Die BEDINGUNG enthalt also zwei
Bedingungen, die beide erflllt sein mussen.

* (A) Geschafft

9/9

	If-Else Anweisungen
	if
	else
	elif

	Loops
	for
	while

	List Comprehension
	Übungen

