
1 / 8

NumPy Arrays
by Woche 3

Nachdem wir die wichtigsten Grundlagen in Python kennengelernt haben, können wir
uns nun mit dem ersten zusätzlichen Model beschäftigen: NumPy. NumPy steht für
numerical python und ist eine Bibliothek, die das Rechnen mit Zahlen in Python
erleichtert und auch beschleunigt. Es ist eine der wichtigsten Bibliotheken in Python und
wird in fast jedem wissenschaftlichen Projekt verwendet.

Es sei an dieser Stelle vorweggenommen, dass NumPy 2005 veröffentlicht wurde,
während Pandas 2008 veröffentlicht wurde. Pandas baut auf NumPy auf und ist im
Grunde eine Erweiterung von NumPy. Aus diesem Grund beschäftigen wir uns hier
zuerst also mit NumPy. Trotzdem werden wir erstmals Daten in Tabellen auswerten und
auch importieren/exportieren, wenn wir uns mit Pandas beschäftigen.

Dass man np als Kürzel für NumPy verwendet, ist in der Python-Community so weit
verbreitet ist, dass es schon komisch wäre, wenn man es anders handhabt:

import numpy as np

Showcase: Einfacher & Schneller
Noch bevor die genaue Funktionsweise von NumPy erklärt wird, soll hier ein kleines
Beispiel gezeigt werden, wie NumPy das Rechnen mit Zahlen erleichtert und
beschleunigt. Zum Vergleich wollen wir folgendes einmal mit Listen und mit NumPy-
Arrays tun: Für die Werte 1-5, welche in einem Objekt gespeichert sind, sollen die
Quadratzahlen berechnet werden:

Liste mit Loop
x = list(range(1, 6))
y = []

for i in x:
 y.append(i**2)

print(x)
print(y)

[1, 2, 3, 4, 5]
[1, 4, 9, 16, 25]

1

2 / 8

Liste mit List Comprehension
x = list(range(1, 6))
y = [i**2 for i in x]

print(x)
print(y)

[1, 2, 3, 4, 5]
[1, 4, 9, 16, 25]

Array
x = np.arange(1, 6)
y = x**2

print(x)
print(y)

[1 2 3 4 5]
[1 4 9 16 25]

Es wird direkt offensichtlich, dass der Code mit NumPy deutlich kürzer ist. Das liegt
daran, dass NumPy speziell für das Rechnen mit Zahlen geschrieben wurde und
deshalb in diesem Fall die Quadrierung direkt auf das Array, also jede einzelne Zahl im
Array, angewendet werden kann. Bei Listen ist das nicht ohne weiteres möglich -
stattdessen müssen wir dort einen Loop verwenden, um jede Zahl in der Liste zu
quadrieren. Dafür sind hier zwei verschiedene Varianten gezeigt: Einmal mit einem Loop
und einmal mit einer List Comprehension (siehe Kapitel 2.5). Der NumPy-Ansatz ist aber
kürzer als beide Varianten mit Listen.

Neben der Kürze des Codes ist auch die Geschwindigkeit ein wichtiger Vorteil von
NumPy. Hier wird mittels dem timeit Modul die Zeit gemessen, die benötigt wird, um die
Quadrate der Zahlen 1-1000 zu berechnen. Die Zeit wird dabei in Sekunden gemessen
und das Ganze 1000 Mal wiederholt. Das Ergebnis ist, dass NumPy in diesem Fall etwa
100x schneller ist als Listen:

import timeit

2

3 / 8

code_liste = """
x = list(range(1, 1001))
y = [i**2 for i in x]
"""

liste_zeit = timeit.timeit(
 stmt=code_liste,
 number=1000,
 globals=globals()
)

print(liste_zeit)

0.023115399992093444

#

code_array = """
x = np.arange(1, 1001)
y = x**2
"""

array_zeit = timeit.timeit(
 stmt=code_array,
 number=1000,
 globals=globals()
)

print(array_zeit)

0.0010273000225424767

NumPy Arrays
Das wichtigste Objekt in NumPy ist das ndarray (kurz für n-dimensional array). Ein Array
ist eine Datenstruktur, die es erlaubt, mehrere Werte in einer Variablen zu speichern. Ein
ndarray kann also mehrere Werte speichern - so wie auch Listen, Tuples, Sets und
Dictionaires. Im Gegensatz zu Listen, Tuples, Sets und Dictionaries in Python, die
heterogen sein können (verschiedene Objekttypen speichern), sind ndarray-Objekte
homogen. Das bedeutet, dass sie ausschließlich Werte eines einzigen Datentyps
enthalten. Diese Homogenität ermöglicht es, dass die Daten zusammenhängend im
Speicher abgelegt werden, was den Zugriff und die Verarbeitungsgeschwindigkeit
erheblich verbessert. Darüber hinaus bietet NumPy viele numerische Funktionen an, die

3

4 / 8

speziell für mit Zahlen gefüllte ndarray-Objekte entwickelt wurden, um die Arbeit mit
numerischen Daten effizient und effektiv zu gestalten.

erzeugen
np.array()

Ein Array kann auf verschiedene Weisen erstellt werden. Die wohl intuitivste ist, ein
Array aus einer Liste zu erstellen. Hier erzeugen wir erst eine Liste und konvertieren sie
dann in ein array. Neben den Objekten selbst, lassen wir uns auch die Typen der
Objekte mittels print(type(...)) ausgeben:

a = [1, 2, -3, 42] # Liste
b = np.array(a)

print(a)
print(type(a))

[1, 2, -3, 42]
<class 'list'>

print(b)
print(type(b))

[1 2 -3 42]
<class 'numpy.ndarray'>

Neben Listen können auch Tuples in Arrays umgewandelt werden. Die übergebenen
Listen und Tuples dürfen dabei sogar geschachtelt sein (also Listen in Listen, Tuples in
Tuples, etc.) - dann werden aber auch mehrdimensionale Arrays erstellt (später mehr
dazu).

a = (1, 2, -3, 42) # Tuple
b = np.array(a)
print(b)

[1 2 -3 42]

c = [(1, 2, 3), [4, 5, 6]] # Tuple & Liste in Liste
d = np.array(c)

4

5 / 8

print(d)
print(type(d))

[[1 2 3]
 [4 5 6]]
<class 'numpy.ndarray'>

weitere Funktionen

Neben np.array() gibt es noch viele weitere Funktionen, um Arrays zu erstellen. Hier
sollen einige davon vorgestellt werden:

np.zeros(3) # Array mit 3 Nullen

array([0., 0., 0.])

np.ones(3) # Array mit 3 Einsen

array([1., 1., 1.])

np.full(3, 4.) # Array mit 3 Vieren

array([4., 4., 4.])

 Hinweis

Die Funktionen np.zeros(), np.ones() erzeugen wie beschrieben Arrays mit Nullen
und Einsen. Beim Ausgeben der Arrays sieht man außerdem, dass dort 0. anstatt 0
und 1. anstatt 1 steht. Das liegt daran, dass NumPy standardmäßig mit float-Zahlen
und nicht int-Zahlen arbeitet (siehe Kapitel 2.2 Datentypen). Man kann es auch
prüfen, indem man sich den type() eines einzelnen Elements des Arrays ausgeben
lässt, z.B. via type(np.zeros(3)[0]). Aus diesem Grund - und um zwischen den
Beispielen konsistent zu bleiben - haben wir auch in der Funktion np.full() eine
float-Zahl 4. und nicht 4 übergeben.

Es ist auch leicht möglich sich Zufallszahlen ausgeben zu lassen. Hierbei gibt es
verschiedene Funktionen, die Zufallszahlen generieren. Die Funktion np.random.rand()
gibt z.B. Zufallszahlen zwischen 0 und 1 aus, wohingegen bei der Funktion

5

6 / 8

np.random.randint() ganze Zufallszahlen zwischen zwei selbstgewählten Grenzen
generiert werden.

np.random.rand(3)

array([0.21495739, 0.12379982, 0.62025328])

np.random.randint(low=10, high=20, size=3)

array([17, 11, 18], dtype=int32)

Schließlich seien noch np.arange und np.linspace genannt. Beide Funktionen
generieren Zahlenfolgen. np.arange generiert dabei eine Zahlenfolge, die sich aus einer
Start- und Endzahl und einem Schritt zusammensetzt. np.linspace generiert eine
Zahlenfolge, die sich aus einer Start- und Endzahl und einer Anzahl an Zahlen
zusammensetzt.

Zahlen von 0 bis 10 in 2er Schritten
np.arange(0, 11, 2)

array([0, 2, 4, 6, 8, 10])

5 Zahlen zwischen 0 und 10
np.linspace(0, 10, 5)

array([0. , 2.5, 5. , 7.5, 10.])

Es fällt auf, dass die beiden Funktionen sich unterschiedlich bzgl. des Einschluss des
Endwerts verhalten. Bei np.arange() ist der Endwert nicht enthalten (wie auch bei
range() oder beim Slicing von Listen, siehe Kapitel 2.3), bei np.linspace() hingegen
schon. Außerdem produziert np.arange() standardmäßig Integer und np.linspace()
Floats.

Mehrdimensional Arrays
Bisher wurden nur eindimensionale Arrays gezeigt und diese werden wir auch vorrangig
brauchen. Es gibt aber auch mehrdimensionale Arrays. Eindimensionale Arrays werden
auch als Vektoren bezeichnet, zweidimensionale Arrays als Matrizen und
mehrdimensionale Arrays als Tensoren. Außerdem gibt es natürlich auch 0-dimensionale

6

7 / 8

Arrays, also Arrays die nur ein Element/eine Zahl enthalten, welche als Skalare
bezeichnet werden.

Quelle: Mukesh Mithrakumar

Wie oben kurz gezeigt, kann ein mehrdimensionales Array aus einer geschachtelten
Liste oder einem geschachtelten Tuple erstellt werden. Ebenso, können aber auch
Befehle wie np.reshape() verwendet werden, um aus einem eindimensionalen Array ein
mehrdimensionales Array zu erstellen.

x = np.array([[1, 2], [3, 4]])

print(x)

[[1 2]
 [3 4]]

x = np.array([1, 2, 3, 4, 5, 6])
y = np.reshape(x, (2, 3))
print(y)

[[1 2 3]
 [4 5 6]]

x = np.array([1, 2, 3, 4, 5, 6])
y = np.reshape(x, (3, 2))
print(y)

7

https://dev.to/mmithrakumar/scalars-vectors-matrices-and-tensors-with-tensorflow-2-0-1f66

8 / 8

[[1 2]
 [3 4]
 [5 6]]

Bis auf die unten angegebene weitere Ressource soll hier aber nicht weiter auf
mehrdimensionale Arrays eingegangen werden. Es sei nur gesagt, dass die meisten
Funktionen, die auf eindimensionalen Arrays angewendet werden können, auch auf
mehrdimensionalen Arrays angewendet werden können. Bereiche in denen
mehrdimensionale Arrays benötigt werden, sind z.B. Bildverarbeitung, neuronale Netze
und Simulationen. Gleichzeitig sind Matrizen auch Grundlage für die Schätzung von z.B.
Regressionsmodellen, welche wir nutzen werden um Daten zu analysieren. Allerdings
werden wir dafür bereitgestellte Funktionen nutzen, sodass wir selbst nicht mit
mehrdimensionalen Arrays arbeiten müssen.

 Weitere Ressourcen

• Programmieren Lernen #8 - Mehrdimensionale Arrays

Übungen
Finde selbstständig, also mithilfe der Python Dokumentation und/oder des Internets
heraus mit welchem Befehl meinarray.??? (1) man die Anzahl der Elemente eines Arrays
herausfinden kann, (2) man die Elemente in einem Array der Größe nach sortieren kann.

mein_array = np.array([1, 9, 5])

Zeige Anzahl Elemente: mein_array. ____Sortiere Elemente: mein_array. ____

8

https://youtu.be/vtyBWsyRU-o?si=co6XlU65eI71zb7Y

	Showcase: Einfacher & Schneller
	NumPy Arrays
	erzeugen
	np.array()
	weitere Funktionen

	Mehrdimensional Arrays

	Übungen

