< BioMath

NumPy Arrays

by Woche 3

Nachdem wir die wichtigsten Grundlagen in Python kennengelernt haben, kdnnen wir
uns nun mit dem ersten zusatzlichen Model beschaftigen: NumPy. NumPy steht fiir
numerical python und ist eine Bibliothek, die das Rechnen mit Zahlen in Python
erleichtert und auch beschleunigt. Es ist eine der wichtigsten Bibliotheken in Python und
wird in fast jedem wissenschaftlichen Projekt verwendet.

Es sei an dieser Stelle vorweggenommen, dass NumPy 2005 verdffentlicht wurde,
wahrend Pandas 2008 verdoffentlicht wurde. Pandas baut auf NumPy auf und ist im
Grunde eine Erweiterung von NumPy. Aus diesem Grund beschéaftigen wir uns hier
zuerst also mit NumPy. Trotzdem werden wir erstmals Daten in Tabellen auswerten und
auch importieren/exportieren, wenn wir uns mit Pandas beschaftigen.

Dass man np als Kurzel fur NumPy verwendet, ist in der Python-Community so weit
verbreitet ist, dass es schon komisch ware, wenn man es anders handhabt:

import numpy as np

Showcase: Einfacher & Schneller

Noch bevor die genaue Funktionsweise von NumPy erklart wird, soll hier ein kleines
Beispiel gezeigt werden, wie NumPy das Rechnen mit Zahlen erleichtert und
beschleunigt. Zum Vergleich wollen wir folgendes einmal mit Listen und mit NumPy-
Arrays tun: Fir die Werte 1-5, welche in einem Objekt gespeichert sind, sollen die
Quadratzahlen berechnet werden:

Liste mit Loop
x = list(range(1l, 6))
y =[]

for i in x:
y.append(i**2)

print(x)

print(y)

[1, 2, 3, 4, 5]
[1, 4, 9, 16, 25]

X
Il

list(range(1l, 6))
y = [i*¥*2 for i in Xx]

print(x)
print(y)

(1, 2, 3, 4, 5]
[1, 4, 9, 16, 25]

X
1l

np.arange(1l, 6)
y = x**2

print(x)
print(y)

[12345]
[1 4 9 16 25]

Es wird direkt offensichtlich, dass der Code mit NumPy deutlich kirzer ist. Das liegt
daran, dass NumPy speziell fir das Rechnen mit Zahlen geschrieben wurde und
deshalb in diesem Fall die Quadrierung direkt auf das Array, also jede einzelne Zahl im
Array, angewendet werden kann. Bei Listen ist das nicht ohne weiteres mdglich -
stattdessen missen wir dort einen Loop verwenden, um jede Zahl in der Liste zu
quadrieren. Daflr sind hier zwei verschiedene Varianten gezeigt: Einmal mit einem Loop
und einmal mit einer List Comprehension (siehe Kapitel 2.5). Der NumPy-Ansatz ist aber
kurzer als beide Varianten mit Listen.

Neben der Kiirze des Codes ist auch die Geschwindigkeit ein wichtiger Vorteil von
NumPy. Hier wird mittels dem timeit Modul die Zeit gemessen, die bendtigt wird, um die
Quadrate der Zahlen 1-1000 zu berechnen. Die Zeit wird dabei in Sekunden gemessen
und das Ganze 1000 Mal wiederholt. Das Ergebnis ist, dass NumPy in diesem Fall etwa
100x schneller ist als Listen:

import timeit

) BioMath

2/8

) BioMath

code liste = """
x = list(range(1l, 1001))

y = [i*¥*2 for i in Xx]

liste zeit = timeit.timeit(
stmt=code liste,
number=1000,
globals=globals()
)

print(liste zeit)

0.023115399992093444

code_array = """
X = np.arange(l, 1001)

y = X**2

array zeit = timeit.timeit(
stmt=code_array,
number=1000,
globals=globals()
)

print(array_zeit)

0.0010273000225424767

NumPy Arrays

Das wichtigste Objekt in NumPYy ist das ndarray (kurz fur n-dimensional array). Ein Array
ist eine Datenstruktur, die es erlaubt, mehrere Werte in einer Variablen zu speichern. Ein
ndarray kann also mehrere Werte speichern - so wie auch Listen, Tuples, Sets und
Dictionaires. Im Gegensatz zu Listen, Tuples, Sets und Dictionaries in Python, die
heterogen sein kdnnen (verschiedene Objekttypen speichern), sind ndarray-Objekte
homogen. Das bedeutet, dass sie ausschlielRlich Werte eines einzigen Datentyps
enthalten. Diese Homogenitat ermdglicht es, dass die Daten zusammenhangend im
Speicher abgelegt werden, was den Zugriff und die Verarbeitungsgeschwindigkeit
erheblich verbessert. Dartiber hinaus bietet NumPYy viele numerische Funktionen an, die

3/8

) BioMath

speziell fir mit Zahlen geflllte ndarray-Objekte entwickelt wurden, um die Arbeit mit
numerischen Daten effizient und effektiv zu gestalten.

erzeugen

np.array()

Ein Array kann auf verschiedene Weisen erstellt werden. Die wohl intuitivste ist, ein
Array aus einer Liste zu erstellen. Hier erzeugen wir erst eine Liste und konvertieren sie
dann in ein array. Neben den Objekten selbst, lassen wir uns auch die Typen der
Objekte mittels print(type(...)) ausgeben:

a=1[1, 2, -3, 42]
np.array(a)

(op
]

print(a)
print(type(a))

[11 21 _31 42]
<class 'list'>

print(b)
print(type(b))

[1 2 -3 42]
<class 'numpy.ndarray'>

Neben Listen kdnnen auch Tuples in Arrays umgewandelt werden. Die Ubergebenen
Listen und Tuples dirfen dabei sogar geschachtelt sein (also Listen in Listen, Tuples in
Tuples, etc.) - dann werden aber auch mehrdimensionale Arrays erstellt (spater mehr
dazu).

a=(1, 2, -3, 42)
b = np.array(a)
print(b)

[1 2 -3 42]

= [(1, 2, 3), [4, 5, 6]]
np.array(c)

o 0
o

4/8

) BioMath

print(d)
print(type(d))

[[12 3]
[4 5 6]]
<class 'numpy.ndarray'>

weitere Funktionen

Neben np.array() gibt es noch viele weitere Funktionen, um Arrays zu erstellen. Hier
sollen einige davon vorgestellt werden:

np.zeros(3)

array([0., 0., 0.])

np.ones(3)

array([1., 1., 1.1)

np.full(3, 4.)

array([4., 4., 4.])

1 Hinweis

Die Funktionen np.zeros(), np.ones() erzeugen wie beschrieben Arrays mit Nullen
und Einsen. Beim Ausgeben der Arrays sieht man auRerdem, dass dort 0. anstatt 0
und 1. anstatt 1 steht. Das liegt daran, dass NumPy standardmaf3ig mit float-Zahlen
und nicht int-Zahlen arbeitet (siehe Kapitel 2.2 Datentypen). Man kann es auch
prufen, indem man sich den type() eines einzelnen Elements des Arrays ausgeben
lasst, z.B. via type(np.zeros(3)[0]). Aus diesem Grund - und um zwischen den
Beispielen konsistent zu bleiben - haben wir auch in der Funktion np.full() eine
float-Zahl 4. und nicht 4 Ubergeben.

Es ist auch leicht méglich sich Zufallszahlen ausgeben zu lassen. Hierbei gibt es
verschiedene Funktionen, die Zufallszahlen generieren. Die Funktion np. random. rand()
gibt z.B. Zufallszahlen zwischen 0 und 1 aus, wohingegen bei der Funktion

5/8

) BioMath

np.random.randint () ganze Zufallszahlen zwischen zwei selbstgewahlten Grenzen
generiert werden.

np.random. rand(3)
array([0.21495739, 0.12379982, 0.62025328])
np.random. randint(low=10, high=20, size=3)

array([17, 11, 18], dtype=int32)

SchlieRlich seien noch np.arange und np.linspace genannt. Beide Funktionen
generieren Zahlenfolgen. np.arange generiert dabei eine Zahlenfolge, die sich aus einer
Start- und Endzahl und einem Schritt zusammensetzt. np.linspace generiert eine
Zahlenfolge, die sich aus einer Start- und Endzahl und einer Anzahl an Zahlen
zusammensetzt.

np.arange(0, 11, 2)

array([06, 2, 4, 6, 8, 10])

np.linspace(0, 10, 5)

array([6. , 2.5, 5., 7.5, 10. 1)

Es fallt auf, dass die beiden Funktionen sich unterschiedlich bzgl. des Einschluss des
Endwerts verhalten. Bei np.arange() ist der Endwert nicht enthalten (wie auch bei
range () oder beim Slicing von Listen, siehe Kapitel 2.3), bei np.linspace() hingegen
schon. AuRerdem produziert np.arange() standardmaRig Integer und np.linspace()
Floats.

Mehrdimensional Arrays

Bisher wurden nur eindimensionale Arrays gezeigt und diese werden wir auch vorrangig
brauchen. Es gibt aber auch mehrdimensionale Arrays. Eindimensionale Arrays werden
auch als Vektoren bezeichnet, zweidimensionale Arrays als Matrizen und
mehrdimensionale Arrays als Tensoren. Auf3erdem gibt es naturlich auch 0-dimensionale

6/8

Arrays, also Arrays die nur ein Element/eine Zahl enthalten, welche als Skalare
bezeichnet werden.

5 4 19 8
(11) 5[3[7] 1.5
16 3 5
2
Row Vector Column Vector
s MATRIX
SCALAR (shape 1x3) (shape 3x1)

TENSOR

Quelle: Mukesh Mithrakumar

Wie oben kurz gezeigt, kann ein mehrdimensionales Array aus einer geschachtelten
Liste oder einem geschachtelten Tuple erstellt werden. Ebenso, kdnnen aber auch
Befehle wie np. reshape() verwendet werden, um aus einem eindimensionalen Array ein
mehrdimensionales Array zu erstellen.

x = np.array([[1, 21, [3, 4]1])

print(x)

[[1 2]
[3 4]]

X = np.array([1, 2, 3, 4, 5, 6])
y = np.reshape(x, (2, 3))
print(y)

[[12 3]
[4 56]]

X = np.array([1, 2, 3, 4, 5, 6])
y = np.reshape(x, (3, 2))
print(y)

< BioMath

7/8

https://dev.to/mmithrakumar/scalars-vectors-matrices-and-tensors-with-tensorflow-2-0-1f66

[[1 2]
[3 4]
[5 6]]

Bis auf die unten angegebene weitere Ressource soll hier aber nicht weiter auf
mehrdimensionale Arrays eingegangen werden. Es sei nur gesagt, dass die meisten
Funktionen, die auf eindimensionalen Arrays angewendet werden kénnen, auch auf
mehrdimensionalen Arrays angewendet werden kdnnen. Bereiche in denen
mehrdimensionale Arrays bendtigt werden, sind z.B. Bildverarbeitung, neuronale Netze
und Simulationen. Gleichzeitig sind Matrizen auch Grundlage fur die Schatzung von z.B.
Regressionsmodellen, welche wir nutzen werden um Daten zu analysieren. Allerdings
werden wir dafiir bereitgestellte Funktionen nutzen, sodass wir selbst nicht mit
mehrdimensionalen Arrays arbeiten missen.

© Weitere Ressourcen

* Programmieren Lernen #8 - Mehrdimensionale Arrays

Ubungen

Finde selbststandig, also mithilfe der Python Dokumentation und/oder des Internets
heraus mit welchem Befehl meinarray.??? (1) man die Anzahl der Elemente eines Arrays
herausfinden kann, (2) man die Elemente in einem Array der Groéf3e nach sortieren kann.

mein _array = np.array([1, 9, 5])

Zeige Anzahl Elemente: mein_array. Sortiere Elemente: mein_array.

) BioMath

8/8

https://youtu.be/vtyBWsyRU-o?si=co6XlU65eI71zb7Y

	Showcase: Einfacher & Schneller
	NumPy Arrays
	erzeugen
	np.array()
	weitere Funktionen

	Mehrdimensional Arrays

	Übungen

