
1 / 6

NumPy Funktionen
by Woche 3

Da wir nun wissen wie wir Numpy-Arrays erstellen können, wollen wir uns nun ansehen,
was wir mit diesen Arrays alles machen können.

import numpy as np

Slicen & Filtern
Wie Liste, können Arrays auch gesliced werden, indem die eckigen Klammern und
Doppelpunkte genutzt werden (siehe Kapitel 2.4.1):

x = np.array([50, 60, 70])
x[1:]

array([60, 70])

x = np.arange(10, 20)
x[-6:-1:2]

array([14, 16, 18])

Es ist auch möglich, Arrays zu filtern. Im Prinzip muss also für jedes Element geprüft
werden ob eine bestimmte Filter-Bedingung erfüllt ist. Umgesetzt wird das in NumPy mit
sogenannten Boolean Arrays, also Arrays, die nur True und False Werte enthalten. Hier
erstmal ein Beispiel:

x = np.arange(1, 6)
y = x>2

z = x[y]

print(x)
print(y)
print(z)

1

2 / 6

[1 2 3 4 5]
[False False True True True]
[3 4 5]

Das Array y ist hier das Boolean Array, das angibt, ob die Werte im Array x größer als 2
sind. Damit das Filtern mit x und y funktioniert, müssen beide unbedingt gleich lang sein
- das ist hier aber automatisch gegeben, da y = x>2 genutzt wird um y zu erzeugen. Wie
schon bei den Rechenoperationen oben wird die Bedingung >2 einfach auf das Array
angewendet (x) und das Ergebnis ist dann ein Array mit True und False Werten. Da es
sich in x um die Zahlen 1-5 handelt, sind demnach die ersten zwei Elemente in y False
und die letzten drei True.

Nun kann mittles der Index-Schreibweise, also den eckigen Klammern, das Array x
gefiltert werden. Alle Werte in x an deren entsprechender Stelle in y ein True steht,
werden in das neue Array z übernommen. Das Ergebnis ist also das Array z, das nur die
Werte 3, 4 und 5 enthält.

Tatsächlich kann die Bedingung auch direkt in den eckigen Klammern angegeben
werden. Das spart eine Zeile und ist auch intuitiver, da die Bedingung direkt dort steht,
wo das Array gefiltert wird. Es passiert aber im Endeffekt dasselbe, nur dass das
Boolean Array nicht als Objekt zwischengespeichert wird.

x = np.arange(1, 6)

z = x[x>2]

print(x)
print(z)

[1 2 3 4 5]
[3 4 5]

x = np.arange(1, 6)

z = x[(x>2) & (x<5)]

print(x)
print(z)

[1 2 3 4 5]
[3 4]

2

3 / 6

Funktionen
Wir können das Beispiel aus dem Showcase im letzten Kapitel aufgreifen und sehen,
dass man eine Operation auf ein Array prinzipiell genauso anwenden kann, wie auf eine
einzelne Zahl, mit dem Unterschied, dass die Operation auf jede Zahl im Array
angewendet wird. Anstatt nur zu quadrieren, kann die Operation auch komplexer sein.
Multipliziert man zwei Arrays derselben Länge miteinander, so wird das Produkt von den
jeweiligen Elementen gebildet.

x = np.arange(1, 6)
y = 0.5 - (x**2 + 2)

print(x)
print(y)

[1 2 3 4 5]
[-2.5 -5.5 -10.5 -17.5 -26.5]

x = np.arange(1, 4)
y = np.arange(2, 5)
z = x*y

print(x)
print(y)
print(z)

[1 2 3]
[2 3 4]
[2 6 12]

Es kann allerdings nicht wie in Kapite 2.1 die Wurzel mittels math.sqrt() gezogen
werden, da math.sqrt() nur auf einzelne Zahlen angewendet werden kann. Stattdessen
gibt es in NumPy die Funktion np.sqrt(), die auf Arrays angewendet werden kann.

import math

x = np.arange(4, 6)
y = math.sqrt(x)

TypeError: only length-1 arrays can be converted to Python scalars

#

3

4 / 6

x = np.arange(4, 6)
y = np.sqrt(x)

print(x)
print(y)

[4 5]
[2. 2.23606798]

 Hinweis

NumPy bietet neben np.sqrt() eine Reihe solcher Funktionen, die auf Arrays
angewendet werden können. Als genereller Tipp und um sich einen Überblick zu
verschaffen kann in Jupyter Notebooks in einer Code-Zelle np. eingegeben werden
und dann mittels TAB (Tabulator-Taste) die Autovervollständigungsvorschläge
angezeigt werden:

4

5 / 6

Aggregatfunktionen
Es gibt auch sogenannte Aggregatfunktionen, die auf Arrays angewendet werden
können. Das sind Funktionen, die aus einem Array einen einzelnen Wert berechnen. Ein
Beispiel ist die Funktion np.sum(), die die Summe aller Elemente in einem Array
berechnet. Diese Aggregatfunktionen unterscheiden sich also nicht von den anderen
NumPy-Funktionen dahingehend, dass sie sich auf alle Elemente des Arrays bezieht,
sondern darin, dass sie nur ein einzelnes, aggregiertes Ergebnis zurückgeben. Solche
Aggregatfunktionen wie np.mean(), np.median(), np.min(), np.max(), np.std() und
np.var() sind für die Datenanalyse unentbehrlich, sodass wir im nächsten Kapitel noch
genauer darauf eingehen werden wie all diese Maße zu nutzen sind.

Für den Moment seien lediglich zwei Beispiele gegeben:

temperaturen = np.array([20, 21, 22, 23, 27])

durchschnitt_temp = np.mean(temperaturen)
print(durchschnitt_temp)

22.6

einnahmen = np.array([1.99, 2.49, 19.99])

print(np.sum(einnahmen))
print(np.sum(einnahmen[einnahmen < 10]))

24.47
4.48

 Weitere Ressourcen

• Learn NUMPY in 5 minutes - BEST Python Library!
• Cheat Sheet: Python for Data Science - Jupyter Notebook

Übungen
Bereche den Mittelwert, Median und das Maximum des folgenden Arrays:

mein_array = np.array([1, 2, 3, 3, 3, 4, 12])

Mittelwert: _Median: _Maximum: __

5

https://youtu.be/xECXZ3tyONo?si=OeRwOqVMTshqj1ql
https://github.com/FavioVazquez/ds-cheatsheets/blob/master/Python/Datacamp/numpy_basics.pdf

6 / 6

Jetzt slice das Array so, dass das erste und letzte Element entfernt werden und
berechne erneut Mittelwert, Median und das Maximum.

Mittelwert: _Median: Maximum:

6

	Slicen & Filtern
	Funktionen
	Aggregatfunktionen

	Übungen

