
1 / 12

Mittelwert und Histogramm
by Woche 3

 Hinweis

Mittelwerte und Histogramme gehören nicht zwangsläufig zusammen, aber dieses
Kapitel ist eine gute Gelegenheit, um beides zu behandeln.

import numpy as np
import matplotlib.pyplot as plt

Mittelwert
Wenn man vom im deutschen von “Mittelwert”, “Mittel”, “Durschschnitt”, “Schnitt” oder im
englischen von “mean” oder “average” spricht, meint man in der Regel¹ den
“arithmetischen Mittelwert”. Dieser wird berechnet, indem alle Werte addiert und durch
die Anzahl der Werte geteilt werden. Es ist die im Alltag wohl gängigste statistische
Kennzahl. So haben beispielswiese alle in ihrer Schulzeit den Durchschnitt ihrer Noten
berechnet. Hier ist ein entsprechendes Beispiel mit NumPy:

noten_A = np.array([2, 3, 4, 2, 1, 2, 3, 2])
mw_A = np.mean(noten_A)

print(mw_A)

2.375

Der Notenschnitt ist hier also 2,375. Es ist selbstverständlich, dass diese Information
schneller und leichter zu verstehen ist, als sich die ganze Notenliste anzusehen.
Gleichzeitig muss aber klar sein, dass auch Informationen über die Noten verloren
gehen, wenn man nur den Mittelwert betrachtet. Das wird deutlich, wenn wir eine weitere
Notenliste hinzunehmen:

noten_B = np.array([2, 3, 3, 2, 2, 2, 3, 2])
mw_B = np.mean(noten_B)

¹Es gibt auch andere Mittelwerte, wie das geometrische Mittel, das harmonische Mittel oder das
quadratische Mittel. Diese sind aber in der Praxis deutlich seltener und werden hier nicht weiter
behandelt. Mehr dazu hier.

1

https://www.wikiwand.com/de/Arithmetisches_Mittel
https://www.wikiwand.com/de/Mittelwert#Definitionen_der_drei_klassischen_Mittelwerte

2 / 12

print(mw_B)

2.375

Auch hier ist der Notenschnitt 2,375, allerdings hatte Person B im Gegensatz zu Person
A keine einzige 1 oder 4, sondern ausschließlich 2en und 3en. Auffälligkeiten wie diese
bilden den Kern der Motivation dafür sich nicht nur eine Kennzahl, sondern mehrere
anzuschauen. In diesem Fall handelt es sich lediglich um eine interessante Randnotiz,
aber in anderen Fällen kann es sehr wichtig sein genau solche Unterschiede in den
Daten herauszuarbeiten.

Wir wollen die beiden Notenlisten nun auch grafisch darstellen, um die Unterschiede
besser zu sehen. Unser erstes Diagramm wird ein Histogramm sein.

2

3 / 12

 Histogramm

Ein Histogramm (engl. histogram) ist eine Art Balken-/Säulendiagramm, das die
Häufigkeit von Werten in bestimmten Intervallen darstellt. Normalerweise sind alle
Intervalle gleich groß, aber das ist nicht zwingend notwendig. Auf der y-Achse
können entweder die absoluten Häufigkeiten oder die relativen Häufigkeiten (in
Prozent) dargestellt werden.

Beispiel 1: 1000 normalverteilte Werte in einem typischen Histogramm. Quelle:
Wikipedia

Beispiel 2: Histogramm mit unterschiedlich breiten Intervallen. Quelle: Wikipedia
3

https://www.wikiwand.com/de/Histogramm
https://www.wikiwand.com/de/Histogramm
https://www.wikiwand.com/de/Histogramm

4 / 12

Um mit Matplotlib ein Histogramm zu erstellen, verwenden wir die Funktion plt.hist().

plt.figure()
plt.hist(noten_A, bins=[0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5])
plt.show()

 Unser erster Plot mit Matplotlib

Zur Erinnerung: Wir haben oben matplotlib.pyplot als plt importiert. Matplotlib ist
eine Bibliothek mit mehreren Modulen und wir nutzen also das Modul pyplot mittels
des gängigen Kürzels plt. Das Modul hat viele Funktionen, die wir nicht alle und nur
nach und nach kennenlernen werden. Die eigentliche Funktion zur Erzeugung eines
Histograms ist wie gesagt plt.hist(). Wir rufen aber auch direkt vorher die Funktion
plt.figure() auf, um ein neues, leeres Diagramm zu erstellen. Das ist nicht
zwingend notwendig, aber es ist eine gute Gewohnheit, die wir uns früh aneignen
wollen. Am Ende rufen wir plt.show() auf, um das Diagramm anzuzeigen.

Wir haben also die Notenliste noten_A als erstes Argument an plt.hist() übergeben,
damit die Funktion Daten hat, die sie zeichnen kann. Die Funktion würde auch ohne das
zweite Argument funktionieren, da sie dann automatisch Intervalle berechnet. Diese
automatisch gewählten Intervalle sind allerdings für speziell diese Daten nicht
zielführend, weshalb wir die Intervalle manuell angeben. Im englischen heißen die

4

5 / 12

Intervalle und deshalb auch das Argument bins. Die Intervallgrenzen sind hier so
gewählt, dass die Noten 1 bis 6 jeweils mittig in einem Intervall liegen.

Wir können nun beschließen Histogramme für Person A und Person B zu erzeugen und
sie nebeneinander zu legen. In diesem Zug wollen wir direkt drei Vorkehrungen treffen:

• Die Intervalle sollten vorher in eine Variable noten_bins gespeichert werden, damit wir
sie nicht mehrfach eingeben müssen.

• Die Füllfarbe der Balken soll sich unterscheiden, damit wir die beiden Histogramme
besser auseinanderhalten können. Person A bekommt die Farbe royalblue und
Person B die Farbe orange². Dazu nutzen wir das Argument color.

• Die Balken sollen einen schwarzen Rand bekommen, damit sie sich besser abheben.
Dazu nutzen wir das Argument edgecolor.

noten_bins = [0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5]

plt.figure()
plt.hist(
 noten_A,
 bins=noten_bins,
 color='royalblue',
 edgecolor='black'
)
plt.show()

²Diese Farben sind in Matplotlib so als Strings definiert, es können aber auch Hexadezimalwerte oder
RGB-Werte angegeben werden. Später mehr dazu.

5

6 / 12

plt.figure()
plt.hist(
 noten_B,
 bins=noten_bins,
 color='orange',
 edgecolor='black'
)
plt.show()

6

7 / 12

Diese beiden Diagramme zeigen schon deutlich, dass die beiden Notenlisten
unterschiedlich sind. Person A hat eine 4 und eine 1, Person B hat keine 4 und keine 1.
Da beide gleich viele Noten erhalten haben, hat Person B dementsprechend mehr 2en
und 3en. Speziell bzgl. des höchsten Balkens - dem der 2en - sieht man das bisher aber
nicht unbedingt sofort. Das liegt daran, dass die y-Achse je Plot unterschiedlich skaliert
ist - nämlich jeweils so, dass es keinen unnötigen leeren Raum über dem höchsten
Balken gibt. Das ist in der Regel ein gutes Standarverhalten von Matplotlib, aber in
diesem Fall wollen wir die y-Achse gleich skalieren, um die beiden Diagramme besser
vergleichen zu können. Dazu nutzen wir die Funktion plt.ylim(). Diese Funktion nimmt
zwei Argumente entgegen, die die untere und obere Grenze der y-Achse festlegen.

Außerdem wollen wir den Plots noch Titel geben, um sie besser auseinanderhalten zu
können. Dazu nutzen wir die Funktion plt.title(). Im Gegensatz zu den
Farbänderungen, die wir oben mittels Argumenten an die Funktion plt.hist()
übergeben haben, sind plt.ylim() und plt.title() weitere Funktionen, die wir
zusätzlich zu plt.hist() aufrufen. Das liegt daran, dass diese Funktionen nicht nur für
das Histogramm, sondern für das gesamte Diagramm gelten. Die Reihenfolge dieser
Aufrufe ist dabei relativ flexibel - so könnte der Titel auch nach plt.hist() festgelegt
werden.

plt.figure()
plt.title('Person A')
plt.hist(
 noten_A,

7

8 / 12

 bins=noten_bins,
 color='royalblue',
 edgecolor='black'
)
plt.ylim(0, 5.5)
plt.show()

plt.figure()
plt.title('Person B')
plt.hist(
 noten_B,
 bins=noten_bins,
 color='orange',
 edgecolor='black'
)
plt.ylim(0, 5.5)
plt.show()

8

9 / 12

Schließlich wollen wir noch die Achsen beschriften und die Mittelwerte als vertikale
Linien einzeichnen. Für die Beschriftungen nutzen wir die Funktionen plt.xlabel() und
plt.ylabel(). Für die Linien nutzen wir die Funktion plt.axvline(). Diese Funktion
zeichnet eine vertikale Linie an einer bestimmten x-Position. Die Position ist hier der
Mittelwert, den wir mit plt.axvline() als erstes Argument übergeben. Die Linien sollen
in diesem Fall die Farbe black und die Linienart dashed haben. Dazu nutzen wir die
Argumente color und linestyle.

plt.figure()
plt.title('Person A')
plt.hist(
 noten_A,
 bins=noten_bins,
 color='royalblue',
 edgecolor='black'
)
plt.axvline(
 mw_A,
 color='black',
 linestyle='dashed'
)
plt.xlabel('Noten')
plt.ylabel('Anzahl')
plt.ylim(0, 5.5)
plt.show()

9

10 / 12

plt.figure()
plt.title('Person B')
plt.hist(
 noten_B,
 bins=noten_bins,
 color='orange',
 edgecolor='black'
)
plt.axvline(
 mw_B,
 color='black',
 linestyle='dashed'
)
plt.xlabel('Noten')
plt.ylabel('Anzahl')
plt.ylim(0, 5.5)
plt.show()

10

11 / 12

Hier wollen wir das Kapitel erstmal beenden. Wir haben uns mit dem Mittelwert und dem
Histogramm beschäftigt und dabei auch schon einige wichtige Funktionen von Matplotlib
kennengelernt. Gleichzeitig konnten wir mit den Histogrammen gut herauskristallisieren,
wie der Mittelwert alleine ggf. nicht ausreicht, um Daten vollständig zu verstehen.

In den nächsten Kapiteln werden wir uns mit dem Median und Quantilen beschäftigen
und dabei zwei neue Diagrammtypen kennenlernen: Streudiagramme und Box-Plots.

 Weitere Ressourcen

• Histogramm zeichnen - einfach erklärt

Übungen
Zeichne Histogramm für die Notenliste noten_A jeweweils mit folgenden Änderungen und
schaue was passiert:

• ohne die Intervalle mit dem Argument bins zu definieren

• mit den Intervallen bins = [1, 2, 3, 4, 5, 6]

• Wähle aus dieser Liste andere Farben für die Balken und den Rand.

• Wähle aus dieser Liste andere Linienarten für die vertikalen Linien.

• (A) Geschafft

11

https://youtu.be/6jto_CLbtYk?si=lftj8nEXNKeTsCA_
https://matplotlib.org/stable/_images/sphx_glr_named_colors_003.png
https://matplotlib.org/stable/gallery/lines_bars_and_markers/linestyles.html

12 / 12

Zeichne die Histogramme nochmals mit relativ skalierten y-Achsen, also Anteil/Prozent
statt der absoluten Anzahl. Dafür sollen nicht vorher Prozentzahlen ausgerechnet
werden, sondern lediglich ein Argument der plt.hist() Funktion genutzt werden. Zur
Übung soll das Argument hier in der Online-Dokumentation von Matplotlib gesucht
werden. Tip: es ist ein Argument, das man auf True setzen muss. Hinweis: die y-Limits
und das y-Label sollten dann auch angepasst werden.

• (A) Geschafft

Welche Note fehlt hier, damit auch dieser Notenschnitt derselbe ist wie die von den
Personen A und B?

np.array([1, 6, 1, 6, 1, _ , 1, 1])

12

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.hist.html

	Mittelwert
	Übungen

