
1 / 11

Punktdiagramme
by Woche 4

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

Nachdem wir nun Mittelwert und Median eingeführt und mithilfe von Histogrammen
visualisiert haben, wollen wir uns nun mit weiteren Visualisierungen beschäftigen. Neben
Balken-/Säulendiagrammen (zu denen Histogramme gehören) werden häufig auch
Punkte in Diagrammen verwendet. Mit solchen Diagrammen sind hier also alle
Diagramme gemeint, in denen Datenpunkte als Punkte (bzw. Symbole) dargestellt
werden. Das wohl bekannteste dieser Diagramme ist das Streudiagramm.

1

2 / 11

 Streudiagramm

Ein Streudiagramm (auch: Punktewolke, Scatterplot) ist ein Diagramm, das i.d.R.
zwei Variablen in einem zweidimensionalen Koordinatensystem darstellt. Jeder
Punkt im Diagramm repräsentiert dann ein Paar von Werten.

Streudiagramm Beispiel 1. Quelle: Wikipedia

Streudiagramm Beispiel 2: Streudiagramm. Quelle: Wikipedia

2

https://www.wikiwand.com/de/Streudiagramm
https://commons.wikimedia.org/wiki/File:Andragradsfunktion_med_brus_1.png?uselang=de
https://www.wikiwand.com/de/Histogramm

3 / 11

Um ein Streudiagramm zu zeichnen, nutzen wir die Funktion plt.scatter(). Diese
Funktion erwartet zwei Argumente: x mit Werten für die x-Achse und y mit Werten für die
y-Achse. Hier ein Beispiel mit möglichst wenig Code und Daten, die sonst nichts mit
diesem Kapitel zu tun haben:

x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
y = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

plt.figure()
plt.scatter(x, y)
plt.show()

Da in unserem Fall pro Person lediglich eine Variable vorliegt, nämlich die Noten, könnte
man argumentieren, dass ein Streudiagramm nicht die ideale Darstellungsform ist. Wir
wollen hier aber dennoch ein Punktdiagramm zeichnen, da wir dabei u.a. ein besseres
Verständnis für die demnächst folgenden Box-Plots bekommen. Diesmal betrachten wir
wieder die Noten der Personen A und B.

noten_A = np.array([2, 3, 4, 2, 1, 2, 3, 2])
mw_A = np.mean(noten_A)
median_A = np.median(noten_A)

print(mw_A)
print(median_A)

3

4 / 11

2.375
2.0

noten_B = np.array([2, 3, 3, 2, 2, 2, 3, 2])
mw_B = np.mean(noten_B)
median_B = np.median(noten_B)

print(mw_B)
print(median_B)

2.375
2.0

Um also unser quasi eindimensionales Streudiagramm zu zeichnen, legen wir die Noten
auf die y-Achse und setzen die x-Werte alle auf einen konstanten Wert, z.B. auf 0.
Letzteres können wir mit der Funktion np.zeros() erreichen, die uns ein Array mit lauter
Nullen in der Länge des übergebenen Arrays erstellt. Wir brauchen genau so viele x-
Werte, wie wir Noten übergeben, also erzeugen wir ein Array mit lauter Nullen in der
Länge des Noten-Arrays und nennen es pseudo_x.

pseudo_x = np.zeros(len(noten_A))

plt.figure()
plt.scatter(x=pseudo_x, y=noten_A)
plt.show()

4

5 / 11

print(noten_A)
print(pseudo_x)

[2 3 4 2 1 2 3 2]
[0. 0. 0. 0. 0. 0. 0. 0.]

Der erzeugte Plot mag auf den ersten Blick eigenartig oder gar falsch aussehen. Wir
sehen nur vier Punkte obwohl wir doch 8 Noten plotten wollten, die y-Achse geht von 1,0
bis 4,0 und die x-Achse von 0,96 bis 1,04. Tatsächlich ist aber alles korrekt. Person A
hatte in der Tat vier verschiedene Noten, nämlich 1, 2, 3 und 4 und die x-Werte sind alle
1. Die Achsen sind lediglich ungünstig skaliert bzw. formatiert. Der Grund warum wir vier
und nicht acht Punkte sehen ist, dass alle Punkte derselben Note genau aufeinander
liegen.

Wir wollen erstmal das Problem mit den Achsen lösen. Die y-Achse sollte nur die Werte
1-6 enthalten und zwar im Idealfall mit der 1 oben und der 6 unten. Das erreichen wir mit
einer Kombination aus plt.yticks() und plt.ylim(). Wir setzen die Ticks der y-Achse
mit plt.yticks() auf np.arange(1, 7) und setzen die Limits der Achse mit plt.ylim()
auf 6,5 und 0,5 - fügen also etwas Platz oben und unten hinzu und forcieren gleichzeitig
die Reihenfolge der Ticks, da wir ja als unteres Limit die größere Zahl 6,5 und als oberes
Limit die kleinere Zahl 0,5 setzen.

Die x-Achse hingegen wollen wir gar nicht sehen, also setzen wir die Ticks mit
plt.xticks() auf eine leere Liste. Außerdem ergänzen wir noch einen Titel und y-Label.

5

6 / 11

plt.figure()
plt.title('Person A')
plt.scatter(x=pseudo_x, y=noten_A)
plt.yticks(np.arange(1, 7))
plt.ylim(6.5, 0.5)
plt.ylabel('Note')
plt.xticks([])
plt.show()

Diese Abbildung ist schon deutlich besser. Nun gilt es aber das Problem mit den
überlappenden Punkten zu lösen. Dieses Problem tritt in der Praxis häufig auf und ist
dann nicht immer so offensichtlich wie hier. Wird es nicht bemerkt, kann es die
Interpretation des Diagramms verfälschen. Selbst mit dem Wissen, dass insgesamt 8
Noten vorliegen, gibt uns das Diagramm in der jetzigen Form keinerlei Anhaltspunkt
dafür ob Person A nur eine oder mehrere 1en bekommen hat.

Es gibt nicht nur eine Lösung für dieses Problem und wir werden in zukünftigen Kapiteln
darauf zurückkommen. Die Lösung, die wir hier anwenden, ist die Verwendung eines
sogenannten Dot-Plots.

6

7 / 11

 Dot-Plot

Ein Dot-Plot (auch¹: Schwarmdiagramm, Swarm plot, Beeswarm plot) ist eine
spezielle Form des Streuungsdiagramms, bei dem Punkte so im Diagramm platziert
werden, dass sie die Verteilung der Datenpunkte darstellen, ohne sich zu
überlappen. Unter gewissen Umständen kann ein Dot-Plot einem Histogramm
ähneln, wobei die Balken durch aneinandergereihte Punkte ersetzt werden.

Dot-Plot Beispiel 1. Quelle: Wikipedia

Dot-Plot Beispiel 2. Quelle: Seaborn Dokumentation

Leider bietet die Bibliothek matplotlib keine Funktion, um Dot-Plots zu zeichnen. Wir
können aber auf das Modul seaborn zurückgreifen, das bereits in den vorherigen
Kapiteln als Erweiterung von matplotlib erwähnt wurde. Auch hier ist es nicht nötig

¹Hin und wieder wird auch der Begriff “Punktdiagramm” speziell für Dot-Plots verwendet. In diesem
Fall ist es wichtig, den Kontext zu beachten. In diesem Kapitel verwenden wir den Begriff
“Punktdiagramm” im Allgemeinen für Diagramme mit Punkten bzw. Punkteverteilungen und “Dot-Plot”
speziell für diese spezielle Form des Streudiagramms.

7

https://www.wikiwand.com/de/Streudiagramm#Dot-Plot
https://www.wikiwand.com/en/Dot_plot_(statistics)
https://seaborn.pydata.org/generated/seaborn.swarmplot.html

8 / 11

seaborn zu installieren, da es wie auch numpy und matplotlib so gängig für die
Auswertung von Daten ist, dass es bereits in der Anaconda-Distribution enthalten ist. Es
muss aber natürlich sichergestellt werden, dass es importiert wird. Dies haben wir
bereits in der ersten Code-Zelle dieses Kapitels oben mit dem gängigen Kürzel getan als
import seaborn as sns.

Da seaborn auf matplotlib aufbaut, können wir die Funktionen von seaborn auch in
Kombination mit matplotlib verwenden. Tatsächlich brauchen wir für unseren Fall jetzt
nur plt.scatter() durch sns.swarmplot() ersetzen. Die Funktion sns.swarmplot()
erwartet als Argumente ebenfalls x und y und zeichnet dann einen Dot-Plot. Wir können
dies direkt für beide Personen A und B machen. Dabei verwenden wir wieder die Farben
royalblue und orange, die wir bereits in den vorherigen Kapiteln verwendet haben.
Außerdem wählen wir mit size=12 eine größere Punktgröße, da die standardmäßige
Punktgröße in seaborn recht klein ist.

plt.figure()
plt.title('Person A')
sns.swarmplot(
 x=pseudo_x,
 y=noten_A,
 color='royalblue',
 size=12
)
plt.yticks(np.arange(1, 7))
plt.ylim(6.5, 0.5)
plt.ylabel('Note')
plt.xticks([])
plt.show()

8

9 / 11

plt.figure()
plt.title('Person B')
sns.swarmplot(
 x=pseudo_x,
 y=noten_B,
 color='orange',
 size=12
)
plt.yticks(np.arange(1, 7))
plt.ylim(6.5, 0.5)
plt.ylabel('Note')
plt.xticks([])
plt.show()

9

10 / 11

Das Ergebnis ist eindeutig besser. Wir sehen jetzt nicht nur wie viele vier verschiedene
Noten die Personen hatte, sondern auch wie diese jeweils verteilt sind. Da unsere x-
Achse hier keine Bedeutung hat ist es auch nicht problematisch, dass einige Punkte
weiter links/rechts liegen als andere - das wäre natürlich anders, wenn auf der x-Achse
auch eine numerische Variable abgebildet wäre wie in einem klassichen Streudiagramm.

Der Vorteil aller Punktdiagramme dieser Art ist, dass explizit und intuitiv verständlich
jeder einzelne Wert im Datensatz dargestellt wird. Zumindest bei nicht allzu großen
Datensätzen können so direkt die Lage, Verteilung, Anzahl und Ausreißer der
Datenpunkte beurteilt werden.

 Weitere Ressourcen

• Ein Streudiagramm erstellen
• Zur Uneindeutigkeit des Durchschnitts bei schiefen Verteilungen (Mittelwert

vs. Median)

Übungen
Erzeuge Dot-Plots für die Noten der Personen C und D und verwende dabei dieselben
Farben, die in den entsprechenden Histogrammen des vorangehenden Kapitels
verwendet wurden.

• (A) Geschafft

10

https://youtu.be/07Fg4D9768c?si=fN9A6fww_Zck4OAx
https://www.youtube.com/watch?v=oXikr5DFaiY
https://www.youtube.com/watch?v=oXikr5DFaiY

11 / 11

Versuche für mindestens eine Person deiner Wahl doch keinen Dot-Plot, sondern ein
Streudiagramm mittels plt.scatter() zu zeichnen. Anstelle alle x-Werte auf 1 zu setzen,
sollten sie hier aber auf 1, 2, 3, 4, 5, 6, 7 und 8 gesetzt werden. Dann kann auch der
Befehle plt.xticks([]) weggelassen werden und stattdessen
plt.xlabel('Reihenfolge') hinzugefügt werden. So entsteht ein Streudiagramm, das
auch die Reihenfolge der Noten darstellt und so verhindert, dass die Punkte aufeinander
liegen.

• (A) Geschafft

11

	Übungen

