
1 / 16

Minimum, Maximum, Quantile, Quartile,
Spannweite, Interquartilabstand
by Woche 4

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

In diesem Kapitel wollen wir uns mit den Begriffen Minimum, Maximum, Quartile,
Quantile, Spannweite und Interquartilsabstand (IQA) beschäftigen. Am bekanntesten
sind wohl das Minimum als kleinster Wert und das Maximum als größter Wert in einer
Datenmenge. Tatsächlich basieren aber alle diese Begriffe und auch der Median auf
Quantilen.

Quantile
Ein Quantil (auch: 𝑝-Quantil, Empirisches Quantil, Stichprobenquantil) ist eine Kennzahl
einer Datenmenge. Für jede Zahl 𝑝 zwischen 0 und 1 teilt - vereinfacht dargestellt - ein 𝑝
-Quantil die Daten so, dass ein Anteil der Daten von 𝑝 kleiner als das 𝑝-Quantil ist und
ein Anteil von 1 − 𝑝 größer als das 𝑝-Quantil ist:

• Das 0-Quantil ist das Minimum der Datenmenge, da 0% (𝑝) der Daten kleiner und
100% (1 − 𝑝) der Daten größer als das 0-Quantil sind.

• Das 1-Quantil ist das Maximum der Datenmenge, da 100% (𝑝) der Daten kleiner und
0% (1 − 𝑝) der Daten größer als das 1-Quantil sind.

Die wohl nächstbekannten Quantile sind die Quartile. Sie heißen Quartile, da sie die
Daten in vier Teile teilen:

• Das 0,25-Quantil ist das 1. Quartil (Q1, unteres Quartil), da 25% (𝑝) der Daten
kleiner und 75% (1 − 𝑝) der Daten größer als das 0,25-Quantil sind.

• Das 0,5-Quantil ist der Median, da 50% (𝑝) der Daten kleiner und 50% (1 − 𝑝) der
Daten größer als das 0,5-Quantil sind.

• Das 0,75-Quantil ist das 3. Quartil (Q3, oberes Quartil), da 75% (𝑝) der Daten
kleiner und 25% (1 − 𝑝) der Daten größer als das 0,75-Quantil sind.

1

2 / 16

Quelle: Shaun Tuerny

Darüber hinaus können prinzipiell alle möglichen Quantile berechnet werden. So gibt es
auch das 0,1-Quantil, das 0,9-Quantil, das 0,99-Quantil, das 0,01-Quantil, das 0,999-
Quantil, das 0,001-Quantil, usw. Einige der Quantile tragen dann auch entsprechende
Eigennamen, wie z.B. Terzile¹, Quintile², Dezile³ und die Perzentile⁴.

Man kann also sagen, dass einige Quantile häufiger als andere Quantile verwendet
werden, aber prinzipiell kann jedes Quantil berechnet werden.

Spannweite und IQA
Ebenfalls auf den Quantilen basieren die Spannweite und der Interquartilsabstand (IQA).
Nachdem wir bis hier nur Lagemaße genutzt haben sind diese beiden Kennzahlen also
die ersten Streuuungsmaße auf die wir in diesem Kapitel eingehen.

Die Spannweite ist die Differenz zwischen dem Maximum und dem Minimum einer
Datenmenge. Sie gibt also an, wie weit die Daten auseinander liegen. Die Spannweite
ist ein einfaches Maß für die Streuung der Daten, aber sie ist auch sehr anfällig
gegenüber Ausreißern.

Der Interquartilsabstand (IQA) (engl. interquartile range (IQR)) ist die Differenz
zwischen dem 3. Quartil und dem 1. Quartil einer Datenmenge. Er gibt also an, wie weit
die mittleren 50% der Daten auseinander liegen. Der IQA ist ein robustes Maß für die
Streuung der Daten, da er nicht von einzelnen Ausreißern beeinflusst wird.

Wir ziehen die Noten von Personen B und E heran, um die Spannweite und den IQA zu
berechnen und darzustellen.

¹Terzile teilen die Daten in drei Teile. Das 0,33-Quantil ist das 1. Terzil, das 0,66-Quantil ist das 2.
Terzil.

²Quintile teilen die Daten in fünf Teile. Das 0,2-Quantil ist das 1. Quintil, das 0,4-Quantil ist das 2.
Quintil, das 0,6-Quantil ist das 3. Quintil, das 0,8-Quantil ist das 4. Quintil.

³Dezile teilen die Daten in zehn Teile. Das 0,1-Quantil ist das 1. Dezil, das 0,2-Quantil ist das 2. Dezil,
das 0,3-Quantil ist das 3. Dezil, usw.

⁴Perzentile teilen die Daten in hundert Teile. Das 0,01-Quantil ist das 1. Perzentil, das 0,02-Quantil ist
das 2. Perzentil usw.

2

https://www.scribbr.com/statistics/quartiles-quantiles/
https://www.wikiwand.com/de/Spannweite_(Statistik)
https://www.wikiwand.com/de/Interquartilsabstand_(deskriptive_Statistik)

3 / 16

noten_B = np.array([2, 3, 3, 2, 2, 2, 3, 2])
min_B = np.min(noten_B)
Q1_B = np.quantile(noten_B, 0.25)
Q3_B = np.quantile(noten_B, 0.75)
max_B = np.max(noten_B)

spannweite_B = max_B - min_B
IQA_B = Q3_B - Q1_B

print(Q1_B)
print(Q3_B)

2.0
3.0

print(spannweite_B)
print(IQA_B)

1
1.0

noten_E = np.array([2, 3, 4, 2, 1, 2, 3, 6])
min_E = np.min(noten_E)
Q1_E = np.quantile(noten_E, 0.25)
Q3_E = np.quantile(noten_E, 0.75)
max_E = np.max(noten_E)

spannweite_E = max_E - min_E
IQA_E = Q3_E - Q1_E

print(Q1_E)
print(Q3_E)

2.0
3.25

print(spannweite_E)
print(IQA_E)

5
1.25

3

4 / 16

Dabei fällt auf, dass es im Gegensatz zu np.min(), np.median() und np.max() keine
Funktionen np.q1() und np.q3() gibt. Stattdessen nutzen wir np.quantile(), also die
allgemeine Funktion zur Berechnung von Quantilen, und geben als zweites Argument
den gewünschten Quantilwert an. Auch die Spannweite und der IQA berechnen wir
selbst, indem wir die entsprechenden Werte voneinander abziehen, da es dafür keine
Funktionen gibt.

Wir könnten nun überlegen wie man diese Quantile bzw. die daraus abgeleiteten
Streuungsmaße visualisieren kann. Eine Möglichkeit wäre jeweils eine Linie für die
Spannweite und das IQA einzuzeichnen. Das geht, indem wir die Funktion plt.vlines()
nutzen, die vertikale Linien (wieder bei unserem pseudo x 0) zeichnet mit Start- (ymin=)
und Endpunkt (ymax=) zeichnet. Wir nutzen sie also zweimal, um die Spannweite und
den IQA einzuzeichnen. Dabei stellen wir sicher, dass die Linien unterschiedlich
aussehen, indem wir die Farbe (colors=), Dicke (lw=, linewidth) und den Linienstil
(linestyle=) anpassen.

pseudo_x = np.zeros(len(noten_B))

plt.figure()
plt.title('Person B')
sns.swarmplot(
 x=pseudo_x,
 y=noten_B,
 color='orange',
 size=12
)
plt.vlines(
 x=0,
 ymin=min_B,
 ymax=max_B,
 colors='teal',
 lw=6
)
plt.vlines(
 x=0,
 ymin=Q3_B,
 ymax=Q1_B,
 colors='cyan',
 lw=3,
 linestyle='dotted'
)
plt.yticks(np.arange(1, 7))
plt.ylim(6.5, 0.5)
plt.ylabel('Note')

4

5 / 16

plt.xticks([])
plt.show()

plt.figure()
plt.title('Person E')
sns.swarmplot(
 x=pseudo_x,
 y=noten_E,
 color='firebrick',
 size=12
)
plt.vlines(
 x=0,
 ymin=min_E,
 ymax=max_E,
 colors='teal',
 lw=6
)
plt.vlines(
 x=0,
 ymin=Q3_E,
 ymax=Q1_E,
 colors='cyan',
 lw=3,
 linestyle='dotted'
)

5

6 / 16

plt.yticks(np.arange(1, 7))
plt.ylim(6.5, 0.5)
plt.ylabel('Note')
plt.xticks([])
plt.show()

Box-Plots
Das hat also mehr oder weniger gut funktioniert - wir haben die Spannweite und den IQA
visualisiert. Allerdings gibt es eine etablierte, bessere Möglichkeit, die Spannweite und
den IQA zu visualisieren: Box-Plots.

6

7 / 16

 Box-Plot

Ein Box-Plot (auch: Box-Whisker-Plot, Kastengrafik) zeigt die Spannweite (also
Minimum und Maximum) als eine Box/Kasten, den IQA (also oberes und unteres
Quartil) als Whisker/Antenne, sowie den Median als Strich innerhalb der Box. Ein
Box-Plot ist also eine kompakte und informative Darstellung einiger der wichtigsten
Kennzahlen einer Datenmenge. In der Regel wird auch ermittelt, ob es Ausreißer gibt
und diese dann als einzelne Punkte außerhalb der Whiskey dargestellt, obwohl die
Whisker ja eigentlich die gesamte Spannweite der Daten abdecken. Wie einzelne
Datenpunkte als Ausreißer identifiziert werden, ist allerdings nicht einheitlich
geregelt. Die gängigste Methode ist die 1,5-IQA-Regel. Demnach sind alle
Datenpunkte, die mehr als 1,5 mal den IQA von den Quartilen entfernt sind,
Ausreißer.

Box-Plot Beispiel 1. Quelle: Wikipedia

Box-Plot Beispiel 2. Quelle: Björn Walther

7

https://www.wikiwand.com/de/Box-Plot
https://www.wikiwand.com/de/Box-Plot
https://bjoernwalther.com/boxplot-in-r-erstellen/

8 / 16

Wir können die Funktion sns.boxplot() nutzen, um Box-Plots zu erstellen. Die Funktion
berechnet dann automatisch die Spannweite, den IQA und den Median und zeichnet sie
in den Box-Plot ein.

plt.figure()
plt.title('Person B')
sns.swarmplot(
 x=pseudo_x,
 y=noten_B,
 color='orange',
 size=12
)
sns.boxplot(
 x=pseudo_x,
 y=noten_B
)
plt.yticks(np.arange(1, 7))
plt.ylim(6.5, 0.5)
plt.ylabel('Note')
plt.xticks([])
plt.show()

plt.figure()
plt.title('Person E')
sns.swarmplot(
 x=pseudo_x,

8

9 / 16

 y=noten_E,
 color='firebrick',
 size=12
)
sns.boxplot(
 x=pseudo_x,
 y=noten_E
)
plt.yticks(np.arange(1, 7))
plt.ylim(6.5, 0.5)
plt.ylabel('Note')
plt.xticks([])
plt.show()

Es ist wohl auch Geschmackssache, aber diese Abbildung kann meines Erachtens
verbessert werden, indem die Box-Plots neben die Punkte gezeichnet werden. Das geht
z.B., indem wir die x-Werte der Box-Plots verschieben. Unsere Punkte werden ja
weiterhin bei unserem pseudo x 0 eingezeichnet. Die Box-Plots können wir also z.B. bei
pseudo_x+1, also 1 einzeichnen. Somit werden die Punkte bei x=0 und die Box-Plots bei
x=1 eingezeichnet. Um die Skalierung (also quasi den Zoom) der x-Achse selbst
anzupassen, nutzen wir dann auch plt.xlim(-0.5, 1.5). Außerdem passen wir noch die
Farbe an und reduzieren die Breite der Box-Plots, damit sie nicht zu breit werden.

9

10 / 16

 Probleme mit Erzeugung der Abbildung?

Achtung! Es kann sein, dass die bei euch erzeugten Abbildungen nicht genau so
aussehen wie die hier obwohl ihr den exakt gleichen Code verwendet. Das liegt
wahrscheinlich daran, dass ihr eure seaborn Version aktualisieren müsst. Mehr dazu
im folgenden Kapitel ‘4.A Module installieren’.

plt.figure()
plt.title('Person B')
sns.swarmplot(
 x=pseudo_x,
 y=noten_B,
 color='orange',
 size=12
)
sns.boxplot(
 x=pseudo_x+1,
 y=noten_B,
 color='orange',
 width=0.5
)
plt.yticks(np.arange(1, 7))
plt.ylim(6.5, 0.5)
plt.ylabel('Note')
plt.xlim(-0.5, 1.5)
plt.xticks([])
plt.show()

10

11 / 16

plt.figure()
plt.title('Person E')
sns.swarmplot(
 x=pseudo_x,
 y=noten_E,
 color='firebrick',
 size=12
)
sns.boxplot(
 x=pseudo_x+1,
 y=noten_E,
 color='firebrick',
 width=0.5
)
plt.yticks(np.arange(1, 7))
plt.ylim(6.5, 0.5)
plt.ylabel('Note')
plt.xlim(-0.5, 1.5)
plt.xticks([])
plt.show()

11

12 / 16

Es fällt auf, dass der Box-Plot für Person B nur aus einer Box zu bestehen scheint. Das
liegt daran, dass die Daten von Person B nur aus zwei verschiedenen Noten bestehen,
nämlich 2 und 3. Als Resultat sind die Spannweite und IQA identisch, sodass es keine
Whisker gibt. Außerdem ist der Median auch 2, entspricht also dem Minimum, sodass es
auch keine Linie innerhalb der Box gibt. Der Plot ist also korrekt gezeichnet und zeigt
korrekt an, dass die Daten von Person B nicht besonders gestreut sind.

Darüber hinaus fällt auf, dass es beim Box-Plot für Person E einen Ausreißer gibt: Die
Note 6. Der Ausreißer wird als einzelner Punkt außerhalb der Whisker dargestellt.
Demnach endet der Whisker bei der Note 4, da die Note 6 als Ausreißer von der
eigentlichen Bestimmung des Minimums und Maximums ausgeschlossen wird. Diese
Einstufung ab wann ein Datenpunkt als Ausreißer gilt, wurde mit der gängigen 1,5-IQA-
Regel durchgeführt. Demnach sind alle Datenpunkte, die mehr als 1,5 mal den IQA von
den Quartilen entfernt sind, Ausreißer. Wie oben berechnet, gilt für Person E 𝑄1 = 2.0,
𝑄3 = 3.25 und 𝐼𝑄𝐴 = 1.25. Die untere Ausreißergrenze ist also 2.0 − 1.5*1.25 = 0.125
und die obere Ausreißergrenze ist 3.25 + 1.5*1.25 = 4.375. Der kleinste Werte im
Datensatz ist 1 und liegt also noch innerhalb der unteren Ausreißergrenze. Die Note 6
als größter Wert liegt allerdings außerhalb dieser Grenzen und wird als Ausreißer
dargestellt.

Mittelwert ergänzen
Der Box-Plot ist also eine kompakte und informative Darstellung einiger der wichtigsten
Kennzahlen einer Datenmenge. Es könnte aber bemängelt werden, dass der Mittelwert
fehlt. Hin und wieder sieht man deshalb auch Box-Plots, die den Mittelwert als Punkt/

12

13 / 16

Symbol innerhalb der Box einzeichnen. Das können wir auch tun, indem wir erneut die
Funktion plt.scatter() nutzen, diesmal damit aber nur einen einzigen Punkt zeichnen -
den Mittelwert. Als y-Wert muss alse der Mittelwert der Daten genommen werden, also
y=np.mean(noten_B) bzw. y=np.mean(noten_E) und als x-Wert x=1, also die Position der
Box-Plots auf der x-Achse. Neben der Farbe (color='black') ändern wir diesmal
außerdem das Symbol. Anstatt einen Punkt zu zeichnen, können wir aus einer Fülle an
Symbolen auswählen und entscheiden uns hier mittels marker='D' für eine Raute⁵ (engl.
Diamond).

Schließlich lernen wir noch das Argument zorder= kennen, welches wir hier nutzen
müssen um die Raute auch tatsächlich zu sehen. Dieses Argument gibt die Reihenfolge
an, in der die Elemente gezeichnet werden. Ein Element mit einer höheren zorder wird
also über einem Element mit einer niedrigeren zorder gezeichnet. Gibt man keine zorder
an, wird eine standardmäßige Reihenfolge genutzt, die aber nicht immer zielführend ist.
In unserem Fall wird die Raute sonst unter den Box-Plots gezeichnet, ist also nicht zu
sehen (siehe Übungen). Wir setzen also zorder=3, also eine hohe Zahl, damit sie über
den Box-Plots gezeichnet wird.

plt.figure()
plt.title('Person B')
sns.swarmplot(
 x=pseudo_x,
 y=noten_B,
 color='orange',
 size=12
)
sns.boxplot(
 x=pseudo_x+1,
 y=noten_B,
 color='orange',
 width=0.5
)
plt.scatter(
 x=1,
 y=np.mean(noten_B),
 color='black',
 marker='D',
 zorder=3
)
plt.yticks(np.arange(1, 7))
plt.ylim(6.5, 0.5)
plt.ylabel('Note')

⁵Meines Erachtens eignet sich z.B. die Raute besonders gut, da sie genau in der Mitte des Symbols
Ecken hat, die also den Wert exakt anzeigen - unabhängig der Größe des Symbols. Ein Plus hätte diese
Eigenschaft beispielsweise auch, ein Quadrat hingegen nicht.

13

https://matplotlib.org/stable/api/markers_api.html
https://matplotlib.org/stable/api/markers_api.html

14 / 16

plt.xlim(-0.5, 1.5)
plt.xticks([])
plt.show()

plt.figure()
plt.title('Person E')
sns.swarmplot(
 x=pseudo_x,
 y=noten_E,
 color='firebrick',
 size=12
)
sns.boxplot(
 x=pseudo_x+1,
 y=noten_E,
 color='firebrick',
 width=0.5
)
plt.scatter(
 x=1,
 y=np.mean(noten_E),
 color='black',
 marker='D',
 zorder=3
)
plt.yticks(np.arange(1, 7))

14

15 / 16

plt.ylim(6.5, 0.5)
plt.ylabel('Note')
plt.xlim(-0.5, 1.5)
plt.xticks([])
plt.show()

 Weitere Ressourcen

• Box-Plots - Zeichnen, Interpretieren, Ausreißer - einfach erklärt

Übungen
Wie könnte man Minimum, Median und Maximum des folgenden Arrays ohne die
Funktionen np.min(), np.median() und np.max() und dafür nur mit der Funktion
np.quantile() berechnen?

data = np.array([1, 123, 3, 42])

• Minimum: np.quantile(_______)

• Median: np.quantile(_________)

• Maximum: np.quantile(_______)

15

https://youtu.be/XGT6pcJ-VXY?si=SiD4J0Z_rDu4YZHX

16 / 16

Wähle die Variablen a, b, c und d so, dass das folgende Array mein_array jeweils eine
der folgenden Bedingungen erfüllt. (Es sollen also nicht alle Bedingungen gleichzeitig
erfüllt werden, sondern immer nur Werte gefunden werden, damit eine der Bedingungen
erfüllt ist!)

mein_array = np.array([-3, 100, 1, a, b, c, d])

• Bedingung 1: Der Median und das Minimum sind beide −3.

• (A) Geschafft

• Bedingung 2: Der Box-Plot hat Whisker auf beiden Seiten.

• (A) Geschafft

• Bedingung 3: Der Box-Plot hat nur auf einer Seite einen Whisker.

• (A) Geschafft

• Bedingung 4: Der Box-Plot hat keine Whisker.

• (A) Geschafft

Erzeuge einen Plot ähnlich des letzten in diesem Kapitel, also mit Dot-Plot, Box-Plot und
Mittelwert als Raute. Zeichne jedoch alle Elemente übereinander, also auf dieselbe x-
Position 0. Nutze dann zorder= nicht nur in plt.scatter(), sondern in allen drei
Funktionen, um die Reihenfolge der Elemente zu verändern. Ziel ist es, dass jedes der
drei Elemente einmal im Vordegrund ist, also über den anderen Elementen gezeichnet
wird.

• (A) Geschafft

Anstatt den Mittelwert als Punkt/Raute einzufügen, könnten wir ihn natürlich auch wieder
als gestrichelte rote Linie einfügen - so wie wir es bei den Histogrammen getan haben.
Füge also eine gestrichelte rote Linie für den Mittelwert ein. Hinweis: Das v in dem
Befehl, den wir zum Einfügen der Linie bei den Histogrammen genutzt haben, steht für
vertikal.

16

	Quantile
	Spannweite und IQA
	Box-Plots
	Mittelwert ergänzen

	Übungen

