
1 / 5

Module installieren/Updaten
by Woche 5

In diesem Kapitel wollen wir vor allem lernen wie man neue Module installiert und
bestehende Module updatet. Das Installieren von Modulen ist in Python eigentlich eine
häufige Aufgabe, da Standard-Python an sich nur wenige Module mitbringt. Die meisten
Module müssen also nachinstalliert werden. Speziell für uns war es aber eben noch
nicht notwendig, da wir Python über Anaconda installiert haben, sodass schon viele
Module mitinstalliert wurden.

Thematisch gehört dieses Kapitel dementsprechend auch nicht wirklich in “4 Deskriptive
Statistik”, sondern ist eher ein “Allgemeines” Kapitel. Aber aufgrund einer Besonderheit,
über die einige von euch im vorangegangenen Kapitel gestolpert sind, gibt es nun doch
Anlass an dieser Stelle darauf einzugehen.

Module installieren
Module können auf verschiedene Arten installiert werden. Die einfachste Möglichkeit ist
die Verwendung von pip, dem Python Package Installer. pip ist ein
Kommandozeilenprogramm, das mit Python installiert wird und das es ermöglicht,
Module vom Python Package Index (PyPI) zu installieren. Letzteres ist ein Software-
Verzeichnis und hilft dabei, von der Python-Community entwickelte und geteilte Software
zu finden und zu installieren. Modul/Paket-Entwickler benutzen PyPI, um ihre Software
zu veröffentlichen.

pip kann also über die Kommmandozeile aufgerufen bzw. genutzt werden. Wir können
pip allerdings auch direkt in unseren Jupyter Notebooks verwenden. Um ein neues
Modul zu installieren, müssten wir lediglich folgenden Code ausführen:

Generell
!pip install <modulname>

Beispiel für das Modul "numpy"
!pip install numpy

Als Beispiel wollen wir das Modul faker installieren, welches nicht standardmäßig mit
Anaconda installiert wird. (Das Modul faker wird verwendet, um Testdaten zu
generieren.) Führen wir also den entsprechenden Befehl aus, so vergehen einige
Sekunden, bevor folgender Output erscheint:

1

https://www.wikiwand.com/de/Pip_(Python)
https://pypi.org/

2 / 5

Wichtig ist, dass am Ende der Ausgabe die Meldung Successfully installed faker
erscheint. Das bedeutet, dass das Modul erfolgreich installiert wurde. Als Beweis kann
geprüft werden ob nun eine der Funktionen des Moduls aufgerufen werden kann, z.B.
die zum erzeugen einer E-Mail-Adresse:

import faker as fk
fk.Faker().email()

'cruzkyle@example.com'

 Bestimmte Version installieren

Man kann auch eine ganz bestimmte Version eines Moduls installieren. Dazu wird
der Befehl pip install mit dem Parameter == und der Versionsnummer genutzt, also
pip install <modulname>==<versionsnummer>, z.B. pip install numpy==1.21.2.

Module updaten
Module können auch aktualisiert werden. Dazu wird ebenfalls pip verwendet und der
Befehl install mit dem Parameter --upgrade genutzt. Der Befehl --upgrade sorgt dafür,
dass das bereits installierte Modul auf die neueste Version aktualisiert wird. Der Befehl
sieht also wie folgt aus:

Generell
!pip install --upgrade <modulname>

Beispiel für das Modul "numpy"
!pip install --upgrade numpy

Auch hier können einige Sekunden vergehen nachdem der Befehl ausgeführt wurde bis
der Output erscheint. Und ebenfalls ist es wichtig, dass am Ende der Ausgabe die
Meldung Successfully installed <modulname> steht.

Seaborn vor und nach v0.13
Einige von euch hatten vermutlich im vorangegangenen Kapitel das Problem, dass
swarmplot und boxplot nicht nebeneinander, sondern übereinander gezeichnet wurden,
obwohl ihr denselben Code wie im Online-Material verwendet habt. Das Problem lag
vermutlich daran, dass eine ältere Version von seaborn bei euch installiert ist¹,

¹Dies ist nicht eure Schuld, da es ja mit Anaconda installiert wurde und ihr nicht wusstet, dass es eine
neuere Version gibt. Tatsächlich ist dies ein sehr gutes Beispiel für ein Problem zum Haare raufen, da es

2

3 / 5

wohingegen das hiesige Skript mit der aktuellsten Version erzeugt wurde. Um zu prüfen
welche Version von seaborn bei euch installiert ist, gibt es den pip-Befehl !pip show
seaborn. Alternativ bietet das Modul seaborn selbst auch eine Funktion
seaborn.__version__ an, die die Version des Moduls zurückgibt.

!pip show seaborn

Name: seaborn
Version: 0.13.2
Summary: Statistical data visualization
Home-page:
Author:
Author-email: Michael Waskom <mwaskom@gmail.com>
License:
Location: c:\users\username\...
Requires: matplotlib, numpy, pandas
Required-by:

import seaborn as sns
sns.__version__

'0.13.2'

In speziell diesem Fall macht es einen großen Unterschied, ob seaborn in einer Version
vor oder ab 0.13 installiert ist. Hier der Vergleich, indem derselbe Code aber mit
unterschiedlichen Versionen von seaborn ausgeführt wird:

seaborn 0.11.0

seaborn 0.13.2

Ein zumindest damit verwandter Hinweis findet sich übrigens auch in der seaborn-
Dokumentation bei u.a. den beiden Funktionen swarmplot und boxplot:

Virtual Environments
Ein weiterer wichtiger Punkt in diesem Zusammenhang sind Virtual Environments
(Virtuelle Umgebungen). Dieser Teil ist für euch wohl noch nicht (und für die Prüfung
dieses Kurses auch nicht) relevant, aber es ist dennoch wichtig, dass ihr davon gehört
habt. Falls ihr mittel- und langfristig mit Python arbeitet, solltet ihr euch das Thema auf
die TODO-Liste für nach dem Kurs schreiben.

nicht offensichtlich ist, dass es an der Version liegt. Auch ChatGPT und das Internet können ggf. noch
nicht die Lösung parat haben, wenn die Version noch so neu ist.

3

4 / 5

Ein Environment ist eine isolierte Umgebung, in der Python und alle zugehörigen Module
installiert sind. Vereinfacht ausgedrückt hat man sozusagen mehrere unterschiedliche
Pythons auf einem Rechner, wenn man mehrere Environments einrichtet. Das bedeutet,
dass in einem Environment nur die Module in genau den Versionen installiert sind, die
für ein bestimmtes Projekt benötigt werden. Environments sind also eine Möglichkeit,
verschiedene Projekte voneinander zu trennen und so zu verhindern, dass Module, die
für ein Projekt benötigt werden, in einem anderen Projekt stören.

Quelle: Dataquest

Anwendungsbeispiele von Environments sind:

• Ältere Projekte, die auf älteren Versionen von Modulen basieren, können weiterhin
ausgeführt werden, ohne dass die neuesten Versionen von Modulen aus anderen
Projekte überschrieben werden müssen.

• Projekte, die weniger Module benötigen, müssen nicht alle Module installiert haben,
die in anderen Projekten nötig sind.

Ein sehr bekanntes Tool, um Environments zu erstellen, ist virtualenv, welches seit
Python 3.3 standardmäßig als venv installiert ist. Wie man auch in Anacona relativ
einfach Environments erstellen kann, wird in folgendem Video gezeigt:

https://www.youtube.com/embed/oYrWkW7ENaU?si=E2-QYNnHBwzTyc5y

4

https://www.dataquest.io/blog/a-complete-guide-to-python-virtual-environments/
https://www.youtube.com/embed/oYrWkW7ENaU?si=E2-QYNnHBwzTyc5y

5 / 5

 Weitere Ressourcen

• Virtuelle PYTHON Umgebung: Deshalb brauchst du sie - virtualenv/venv für
Python-Einsteiger erklärt Nicht davon verunsichern lassen, dass im Video Python
vorrangig über die Kommandozeile ausgeführt wird. Das ist nur eine andere Art
Python zu nutzen, die wir hier nicht verwenden um Einsteigerfreundlich zu bleiben.

Übungen
Installiere wie oben gezeigt das Modul faker und prüfe ob es erfolgreich installiert
wurde, indem du - ebenfalls wie oben gezeigt - eine E-Mail-Adresse generierst.

• (A) Geschafft

Stelle sicher, dass du die neueste Version von seaborn installiert hast. Falls nicht, führe
den entsprechenden Befehl aus und prüfe ob die Version nun >=0.13 ist.

• (A) Geschafft

5

https://youtu.be/6Ya8McK-Z3Q?si=aiSG5xyK76h8h9A1
https://youtu.be/6Ya8McK-Z3Q?si=aiSG5xyK76h8h9A1

	Module installieren
	Module updaten
	Seaborn vor und nach v0.13

	Virtual Environments
	Übungen

