
1 / 5

Pandas & JupyterLab
by Woche 6

Nun befassen wir uns endlich mit dem pandas Modul. Dieses Modul ist das Herzstück
der Datenanalyse in Python. Wir werden “richtige” Daten in Tabellenstruktur importieren,
bearbeiten, analysieren und exportieren. Mit anderen Wort: Alles bisher war
Vorbereitung auf das, was jetzt kommt.

Wie auch bei numpy und matplotlib, ist es üblich, pandas unter einem Alias zu
importieren. Der Standard-Alias für pandas ist pd, welchen man auch in dem Logo
wiederfindet.

Showcase Pandas
Ohne, dass wir an dieser Stelle den Code schon verstehen, wollen wir uns hier mit
Beispielen einen Pandas-Vorgeschmack geben. Dazu erzeugen wir erstmal eine Tabelle
mit einigen Daten. Ja, richtig, wir arbeiten endlich mit Tabellen und nicht nur mit
eindiemensionalen Sammlungen von Zahlen etc. Die Beispieldaten haben drei Spalten
und sieben Zeilen:

import numpy as np
import pandas as pd

df = pd.DataFrame({
 'Kategorie': ['Gemüse', 'Gemüse', 'Backware', 'Backware', 'Getränk',
'Getränk', 'Gemüse', 'Backware'],
 'Preis': [1.20, 2.50, 0.80, 3.40, 2.00, 1.50, 3.00, 2.30], # Preise in
Euro

1

2 / 5

 'Kalorien': [50, 70, 250, 300, 120, 110, 40, 500] # Kalorien pro Produkt
})

print(df)

 Kategorie Preis Kalorien
0 Gemüse 1.2 50
1 Gemüse 2.5 70
2 Backware 0.8 250
3 Backware 3.4 300
4 Getränk 2.0 120
5 Getränk 1.5 110
6 Gemüse 3.0 40
7 Backware 2.3 500

Nun können wir mit den folgenden drei Zeilen Code die Daten in der Tabelle analysieren.
In diesem Fall berechnen wir

• den Mittewlert, die Standardabweichung, das Minimum, den Median und das
Maximum

• jeweils für die Spalten Preis und Kalorien und
• gruppiert pro Kategorie,
• wobei am Ende alle Werte auf zwei Nachkommastellen gerundet werden.

agg_funcs = ['mean', 'std', 'min', 'median', 'max']
agg_dict = {col: agg_funcs for col in ['Preis', 'Kalorien']}
summary = df.groupby('Kategorie').agg(agg_dict).round(2)

print(summary)

 Preis Kalorien
 mean std min median max mean std min median max
Kategorie
Backware 2.17 1.31 0.8 2.30 3.4 350.00 132.29 250 300.0 500
Gemüse 2.23 0.93 1.2 2.50 3.0 53.33 15.28 40 50.0 70
Getränk 1.75 0.35 1.5 1.75 2.0 115.00 7.07 110 115.0 120

Man sieht also, dass wir mit Pandas sehr mächtige Funktionen zur Verfügung haben, um
Daten zu analysieren. Zum Vergleich soll überlegt werden wie wir alle dies mit unserem
bisherigen Wissen umgesetzt hätten.

Auch um Daten zu bearbeiten, bietet Pandas viele Funktionen. So können wir die
Tabelle mit folgenden zwei Zeilen Code

2

3 / 5

• in eine “lange” Form bringen, in der Preis und Kalorien in einer Spalte Merkmal
zusammengefasst sind und

• den Spalten deutsche Namen geben.

newnames = {'level_1':'Merkmal', 'mean':'MW', 'std':'StdAbw', 'min':'Min',
'median':'Median', 'max':'Max'}
summary_long = summary.stack(level=0,
future_stack=True).reset_index().rename(columns=newnames)

print(summary_long)

 Kategorie Merkmal MW StdAbw Min Median Max
0 Backware Preis 2.17 1.31 0.8 2.30 3.4
1 Backware Kalorien 350.00 132.29 250.0 300.00 500.0
2 Gemüse Preis 2.23 0.93 1.2 2.50 3.0
3 Gemüse Kalorien 53.33 15.28 40.0 50.00 70.0
4 Getränk Preis 1.75 0.35 1.5 1.75 2.0
5 Getränk Kalorien 115.00 7.07 110.0 115.00 120.0

Schließlich können wir die Tabelle auch direkt an Matplotlib und Seaborn übergeben, um
sie zu visualisieren. Hier ein Beispiel, wie wir Boxplots für Preis und Kalorien pro
Kategorie erstellen könnten:

import seaborn as sns
import matplotlib.pyplot as plt

fig, axes = plt.subplots(1, 2, figsize=(12, 6))
sns.boxplot(data=df, x='Kategorie', y='Preis', ax=axes[0], hue='Kategorie')
sns.boxplot(data=df, x='Kategorie', y='Kalorien', ax=axes[1], hue='Kategorie')
plt.show()

3

4 / 5

Diese und weitere Funktionalitäten von Pandas gilt es also in den nächsten Kapiteln
kennenzulernen.

Wechsel: Jupyter Notebooks → JupyterLabs
Bisher haben wir in Jupyter Notebooks gearbeitet, also sämtlichen Code darüber
ausgeführt, mit Markdown-Zellen ergänzt und so mehrere .ipynb-Dateien erstellt. Als
Einstieg in die Datenanalyse ist das nicht nur in Ordnung, sondern auch förderlich, da
das simplere Layout und die einfache Handhabung von Jupyter Notebooks den Fokus
auf das Wesentliche legen: Erstmal zu lernen mit Python zu programmieren.

Da wir aber nun in die “richtige” Datenanalyse einsteigen, ist jetzt ein guter Zeitpunkt um
eine neue Arbeitsumgebung kennenzulernen. Ein Grund dafür ist z.B., dass wir externe
Dateien wie .csv-Dateien importieren wollen. Demnach findet unsere Arbeit nicht mehr
nur “in einem Notebook” statt, sondern bezieht auch weitere Dateien mit ein. Das ist
natürlich auch in der Praxis eines Data Analysten so. Jupyter Notebooks ist dafür nicht
unbedingt die beste Umgebung, da man in einem Tab seines Browsers stets nur eine
Datei bearbeiten und überblicken kann.

Ganz zu Beginn dieses Kurses wurde bereits erwähnt, dass es auch andere
Arbeitsumgebungen gibt. Wir wollen hier bzgl. der Möglichkeiten einen Schritt nach
vorne machen, uns gleichzeitig aber auch nicht so weit vom bisherigen entfernen, dass
wir uns überfordert fühlen.

Daher bietet sich JupyterLabs an. JupyterLabs ist Jupyter Notebooks sehr ähnlich,
bietet aber eine Reihe von zusätzlichen Funktionen, die das Arbeiten mit Daten
erleichtern. JupyterLabs ist eine Weiterentwicklung von Jupyter Notebooks und beide
stammen von Project Jupyter, einer Non-Profit-Organisation, die sich der Entwicklung

4

https://www.wikiwand.com/de/Project_Jupyter

5 / 5

von Open-Source-Software für interaktive Datenanalyse und wissenschaftliche
Berechnungen verschrieben hat.

Es muss nichts installiert werden, da JupyterLabs bereits in Anaconda enthalten ist. Wir
werden auch weiterhin .ipynb-Dateien verwenden. Hier sind Screenshots von Jupyter
Notebooks und JupyterLabs, um zu verdeutlichen wie ähnlich sie sich sind:

JupyterLabs nutzen
Um JupyterLabs zu starten, öffnen wir den Anaconda Navigator und klicken unter
JupyterLab auf Launch. Alternativ können wir auch wieder in der Konsole (=Anaconda
Prompt) jupyter lab eingeben. In diesem Video sind weitere Informationen dazu:

https://youtu.be/SAjwOJgZ1Js?si=hdP4qj1rVzFfAHf5

Ab dem jetzigen Zeitpunkt sollte also JupyterLabs die bevorzugte Arbeitsumgebung
sein.

Übungen
Öffne eines deiner alten .ipynb Notebooks - also eins, das du in den letzten Wochen mit
Jupyter Notebooks erstellt hast - in JupyterLabs.

• (A) Geschafft

5

https://youtu.be/SAjwOJgZ1Js?si=hdP4qj1rVzFfAHf5

	Showcase Pandas
	Wechsel: Jupyter Notebooks → JupyterLabs
	JupyterLabs nutzen

	Übungen

