
1 / 15

Series & Dataframes
by Woche 6

Pandas stellt uns zwei wichtige Datenstrukturen zur Verfügung: Series und Dataframes.
Series sind dabei eher wie Spalten in einer Tabelle zu verstehen, während Dataframes
die gesamte Tabelle repräsentieren.

import numpy as np
import pandas as pd

Series
Eine Series ist eine eindimensionale Datensammlungsstruktur. Nachdem wir bereits eine
Vielzahl von Datensammlungsstrukturen wie Listen, Tuples, Sets, Dictionaries und
numpy Arrays kennengelernt haben, stellt sich nun die berechtigte Frage:

Warum brauchen wir überhaupt eine weitere eindimensionale Datenstruktur wie
die pandas Series?

Jede dieser Strukturen bringt ihre eigenen Vorteile und Einschränkungen mit sich. Listen
und Tuples bieten Flexibilität durch ihre Fähigkeit, heterogene Daten zu speichern,
wobei Tuples unveränderlich sind. Sets hingegen sind ideal für die Verwaltung
einzigartiger Elemente, während Dictionaries effizienten Zugriff auf Werte über Schlüssel
ermöglichen. Alle diese Strukturen haben gemeinsam, dass sie in der Standardbibliothek
von Python verfügbar sind und grundlegende Funktionen für die Datenspeicherung und -
manipulation bieten.

Mit der Einführung von numpy haben wir einen tiefen Einblick in die Handhabung
homogener Datensätze erhalten, insbesondere in Bezug auf numerische Berechnungen.
numpy Arrays revolutionieren die Art und Weise, wie wir mit großen Datenmengen
umgehen, durch ihre Effizienz und die Möglichkeit, komplexe mathematische
Operationen mit Leichtigkeit auszuführen. Diese Arrays sind allerdings primär auf
numerische Daten ausgerichtet und bieten nicht dieselbe Flexibilität wie die eingebauten
Python-Sammlungen, wenn es um die Arbeit mit tabellarischen Daten geht, die sowohl
numerische als auch nicht-numerische Werte enthalten können.

Hier setzt pandas mit seinen Series und DataFrames an, die speziell für die Analyse und
Manipulation von realen Daten konzipiert wurden. Eine pandas Series ist mehr als nur
eine weitere eindimensionale Datenstruktur; sie ist eine natürliche Erweiterung eines
numpy Arrays, das nicht nur für numerische Daten, sondern für Daten jeglicher Art –
einschließlich Text und Zeiten – optimiert ist. Jedes Element in einer Series kann mit

1

2 / 15

einem Index versehen werden, der weit über die einfache numerische Indizierung
hinausgeht, was die Arbeit mit Daten wesentlich intuitiver und flexibler macht. Darüber
hinaus sind Series in der Lage, fehlende Daten auf eine Weise zu handhaben, die in
reinen numpy Arrays nicht direkt verfügbar ist.

Wie schon bei den numpy Arrays für Zahlen ist ein signifikanter Vorteil der Series
gegenüber den herkömmlichen Sammlungsstrukturen ihre Integration in das pandas-
Ökosystem, das reichhaltige Funktionen für Datenimport, -bereinigung, -manipulation
und -analyse bietet. Während man mit Listen oder Tuples mühsam durch Daten iterieren
und manuelle Bereinigungen durchführen müsste, ermöglichen Series und DataFrames
die Anwendung von hochgradig optimierten Operationen auf ganzen Datensätzen mit
minimalen Codezeilen.

Kurz gesagt, pandas Series füllen eine wichtige Lücke in der Python-Datenlandschaft,
indem sie die leistungsstarken numerischen Fähigkeiten von numpy mit der Flexibilität
und Benutzerfreundlichkeit kombinieren, die für die Arbeit mit realen, oft unvollständigen
oder heterogenen Datensätzen erforderlich sind.

Erstellen
Eine Series kann mittels pd.Series() aus einer Vielzahl von Datenstrukturen erstellt bzw.
umgewandelt werden, darunter Listen, Tuples, Dictionaries und numpy Arrays.

Nach der Erstellung ordnet Pandas der gesamte Series einen spezifischen Datentyp
(dtype) zu, um die Natur der gespeicherten Informationen zu charakterisieren. So
werden beispielsweise Ganzzahlen/Integer als Int64, Gleitkommazahlen/Floats als
Float64, und Boolesche Werte/Booleans als bool typisiert. Darüber hinaus können auch
spezielle Datentypen für Datum und Zeit (datetime64), Zeitdifferenzen (timedelta64) und
Kategorien (category) verwendet werden, welche wir alle später noch genauer
kennenlernen. All diese Datentypten unterstützen eine effiziente Datenverarbeitung und
Analyse.

Integer: Int64
pd.Series([1, 2, 42])

0 1
1 2
2 42
dtype: int64

Floats: Float64
pd.Series(np.array([1.2, 3.4, 5]))

2

3 / 15

0 1.2
1 3.4
2 5.0
dtype: float64

Booleans: bool
pd.Series((True, False, True))

0 True
1 False
2 True
dtype: bool

Datum und Zeit: datetime64
pd.Series([
 pd.Timestamp('2021-01-01'),
 pd.Timestamp('2021-04-15')
])

0 2021-01-01
1 2021-04-15
dtype: datetime64[ns]

Zeitdifferenzen: timedelta64
pd.Series([
 pd.Timedelta('10 days'),
 pd.Timedelta('2 days')
])

0 10 days
1 2 days
dtype: timedelta64[ns]

Kategorien: category
pd.Series(
 ['A', 'B', 'A'],
 dtype="category")

0 A
1 B
2 A

3

4 / 15

dtype: category
Categories (2, object): ['A', 'B']

Wenn eine Series jedoch Daten enthält, die nicht eindeutig einem der spezifischen
Typen zugeordnet werden können, wie Textstrings oder Listen, verwendet Pandas den
Datentyp object. Dieser Catch-all-Typ¹ ermöglicht die Speicherung von komplexen
Strukturen, macht Operationen aber potenziell langsamer und weniger speicher-effizient.

pd.Series(['A', 'B', 'Hello'])

0 A
1 B
2 Hello
dtype: object

pd.Series([[1, 2], [3], [4, 5]])

0 [1, 2]
1 [3]
2 [4, 5]
dtype: object

pd.Series([42, {'key': 'value'}, 3.14])

0 42
1 {'key': 'value'}
2 3.14
dtype: object

Vereinfacht ausgedrückt sind Series mit einem speziellen dtype eine Art “numpy Array
mit Index” - also mit erweiterten Funktionalitäten und Flexibilität - wohingegen Series mit
dtype object eher nur wie eine “Liste mit Index” sind.

Es fällt auf, dass die Series veritkal ausgerichtet ist. Das bedeutet, dass die Daten in
einer Series in einer einzigen Spalte angeordnet sind, wobei jedes Element in der Spalte
eine Zeile repräsentiert. Dieses vertikale Format ist charakteristisch für tabellarische

¹“Catch-all-Typ”, wörtlich übersetzt als “Fang-alles-Typ”, bezeichnet in der Programmierung einen
Datentyp, der als eine Art Auffangbecken für Daten verschiedenster Art dient. In pandas erfüllt der object
Datentyp diese Rolle, indem er es ermöglicht, diverse Datenformen – von Zahlen und Texten bis hin zu
komplexeren Objekten wie Listen oder Dictionaries – innerhalb einer Series zu speichern. Diese
universelle Anwendbarkeit geht jedoch oft zu Lasten der Speicher- und Verarbeitungseffizienz,
besonders im Vergleich zu den spezifischeren, typisierten Alternativen.

4

5 / 15

Daten und ermöglicht es, die Series als Grundlage (bzw. einzelne Spalte) für die
Erstellung von DataFrames (mit mehreren Spalten) zu verwenden, die wir gleich
kennenlernen werden.

Außerdem hat jeder Wert, also jede Zeile, einen Index. Der Index ist eine eindeutige
Kennzeichnung für jede Zeile, die es ermöglicht, auf die Daten in der Series zuzugreifen
und sie zu manipulieren. In den Beispielen oben haben wir keinen Index vordefiniert,
sodass Pandas automatisch einen numerischen Index von 0 bis n-1 erstellt hat, wobei n
die Anzahl der Elemente in der Series ist. Gewissermaßen war also die Indizierung bis
hierhin wie gehabt. Tatsächlich kann die Indizierung in Pandas jedoch viel flexibler
gestaltet werden und gleicht eher der Schlüssel-Wert-Paar-Struktur eines Dictionaries.

Beim Erstellen einer Series aus einer Liste oder einem NumPy Array kann das Argument
index= verwendet werden, um einen expliziten Index anzugeben. Dieser Index kann aus
Zahlen, Strings oder Datumsangaben bestehen, wodurch die Datenzugriffe intuitiver und
flexibler werden. Man kann aber auch direkt ein Dictionary übergeben, wobei die Keys
des Dictionaries als Index verwendet werden.

pd.Series([10, 20, 30], index=['a', 'b', 'c'])

a 10
b 20
c 30
dtype: int64

pd.Series({'a': 10, 'b': 20, 'c': 30})

a 10
b 20
c 30
dtype: int64

Indizierung
Wir können dann den definierten Index verwenden, um auf die Daten zuzugreifen².

artikel = pd.Series({'Burger': 4.99, 'Pommes': 2.99, 'Cola': 1.99})

²Aktuell ist auch möglich auf die Daten über den numerischen Index zuzugreifen, also z.B.
artikel[0], was übrigens mit einem Dictionairy nicht möglich ist. Allerdings wird dabei jetzt schon eine
FuturWarning ausgegeben, dass diese Art des Zugriffs in Zukunft nicht mehr unterstützt wird. Es ist also
besser, sich jetzt schon an den Index zu gewöhnen.

5

6 / 15

artikel

Burger 4.99
Pommes 2.99
Cola 1.99
dtype: float64

artikel['Burger']

np.float64(4.99)

artikel['Pommes':'Cola']

Pommes 2.99
Cola 1.99
dtype: float64

Darüber hinaus können wir auch .loc() und .iloc() verwenden, um auf die Daten
zuzugreifen. Diese Methoden führen wir aber erst gleich für die DataFrames ein, wo
man sie ebenfalls verwenden kann.

Verwenden
Abgesehen von den Indices/Labels verhalten sich Series wie numpy Arrays. Das
bedeutet, dass wir auch viele der bekannten numpy Funktionen (z.B. np.sum(series))
auf Series anwenden können. Gleichzeitig gibt es aber auch die “eingebauten”
Methoden, die speziell für Series entwickelt wurden (z.B. series.sum()). In diesem
Beispiel macht es keinen Unterschied, ob np.sum(artikel) oder artikel.sum() genutzt
wird, denn beide liefern das gleiche Ergebnis. Jedoch, bei komplexeren
Datenoperationen kann der Unterschied ins Gewicht fallen: artikel.sum() ignoriert
beispielsweise standardmäßig Fehlwerte, während np.sum(artikel) ggf. schneller ist.
Man sollte sich übrigens generell mit dem Gedanken anfreunden, dass es beim
Programmieren nicht immer nur eine einzige “richtige” Lösung gibt.

np.sum(artikel)

np.float64(9.97)

artikel.sum()

6

7 / 15

np.float64(9.97)

DataFrames
Ein DataFrame ist eine zweidimensionale Datenstruktur, die aus einer Sammlung von
Series besteht. Jede Series in einem DataFrame repräsentiert eine Spalte, wobei jede
Zeile in einem DataFrame eine separate Beobachtung darstellt. DataFrames sind das
Herzstück des pandas-Ökosystems und bilden die Grundlage für die meisten
Datenanalysen und -manipulationen.

Erstellen
Hier ist nochmal die Tabelle, die wir im Dictionary-Kapitel erstellt haben - diesmal einmal
als Dictionary und einmal als DataFrame:

dict_tabelle = {'Name': ['Donald', 'Daisy', 'Mickey'],
 'Jahr': [1934, 1937, 1928],
 'Tier': ['Ente', 'Ente', 'Maus']}

dict_tabelle

{'Name': ['Donald', 'Daisy', 'Mickey'], 'Jahr': [1934, 1937, 1928], 'Tier':
['Ente', 'Ente', 'Maus']}

pd.DataFrame(dict_tabelle)

 Name Jahr Tier
0 Donald 1934 Ente
1 Daisy 1937 Ente
2 Mickey 1928 Maus

7

8 / 15

 Hinweis zur Ausgabe von DataFrames

In Jupyter Notebook und Jupyter Lab macht es einen Unterschied ob man sich einen
DataFrame mit print(df) oder nur df ausgeben lässt, da letzteres etwas “schöner”
mit html formatiert wird (siehe Screenshot hierunter). Hier in der Online-
Dokumentation wird aber immer die nicht-formatierte Ausgabe-Form zu sehen sein,
die man mit print(df) erhält - auch wenn der gezeigte Befehl df ist und demnach
beim Ausführen in euren Jupyter Lab Umgebungen die formatierte Ausgabe
erscheinen wird.

Es ist also eine klare Tabellenstruktur zu erkennen - die Keys wurden zu Spaltennamen
und die Values zum Spalteninhalt. Auch DataFrames haben Indices, die die Zeilen
identifizieren - allerdings haben wir oben noch keine expliziten Indices definiert, sodass
Pandas wieder einen numerischen Index von 0 bis n-1 erstellt hat. Für diese Tabelle
wäre es wohl angebrachter, die Namen als Index zu verwenden. Hier zwei
Möglichkeiten, wie das gemacht werden kann: Namen als Indizes zusätzlich zur Namen-
Spalte hinzufügen oder die Namen-Spalte als Index definieren.

8

9 / 15

df1 = pd.DataFrame(dict_tabelle,
 index=dict_tabelle['Name']
)
print(df1)

 Name Jahr Tier
Donald Donald 1934 Ente
Daisy Daisy 1937 Ente
Mickey Mickey 1928 Maus

df2 = pd.DataFrame(dict_tabelle)
df2 = df2.set_index('Name')

print(df2)

 Jahr Tier
Name
Donald 1934 Ente
Daisy 1937 Ente
Mickey 1928 Maus

Beim Erzeugen eines DataFrames aus einem Dictionary können die Werte Listen,
Tuples, numpy arrays oder pandas Series sein, solange deren Längen gleich sind. Als
Ausnahme kann man auch Skalarwerte verwenden, die dann für alle Zeilen gelten. In
folgendem Beispiel sind möglichst viele verschiedene Datentypen in einem Dictionary
enthalten, um dies zu demonstrieren. Auch lässt sich erkennen, dass der Index aus der
einen pandas Series für den DataFrame übernommen wird. Mit der Methode .types
kann angezeigt werden welcher Datentyp in welcher Spalte vorliegt.

dict_tabelle_2 = {
 'Name': ['Donald', 'Daisy', 'Mickey'],
 'Jahr': (1934, 1937, 1928),
 'Gewicht': np.array([50, 40, 50]),
 'Größe': pd.Series([1.2, 1.1, 1.3], index = ['DONALD', 'DAISY', 'MICKEY']),
 'Ursprung': 'Disney',
 'Füße' : 2
}

df = pd.DataFrame(dict_tabelle_2)

df

9

10 / 15

 Name Jahr Gewicht Größe Ursprung Füße
DONALD Donald 1934 50 1.2 Disney 2
DAISY Daisy 1937 40 1.1 Disney 2
MICKEY Mickey 1928 50 1.3 Disney 2

df.dtypes

Name object
Jahr int64
Gewicht int64
Größe float64
Ursprung object
Füße int64
dtype: object

 Details für Interessierte

Pandas wählt den Datentyp für jede Serie oder Spalte in einem DataFrame
basierend auf den Daten, die sie enthält, um eine optimale Balance zwischen
Speichereffizienz und Datenpräzision zu gewährleisten. Die Bezeichnungen int64
und int32 repräsentieren Ganzzahltypen/Integer mit 64 bzw. 32 Bit. int64 kann
einen größeren Wertebereich³ darstellen und ist die Standardwahl auf 64-Bit-
Systemen, um die vollständige Präzision und Größenkapazität dieser Plattformen zu
nutzen. int32 hingegen verwendet weniger Speicherplatz und kann auf Systemen
mit geringeren Ressourcen oder bei Datensätzen, bei denen der größere
Wertebereich von int64 nicht benötigt wird, eine effiziente Wahl darstellen. Die
Auswahl zwischen diesen Datentypen erfolgt automatisch, kann aber auch manuell
angepasst werden, um spezifische Anforderungen an die Speichergröße oder
Kompatibilität mit externen Systemen zu erfüllen.

Indizierung
Nun können wir also auch mittels Index auf die Daten zugreifen. Dabei ist zu beachten,
dass die Indizierung in DataFrames etwas komplexer ist als in Series, da wir sowohl auf
die Zeilen als auch auf die Spalten zugreifen können. Prinzipiell gibt es vier Methoden,
um auf die Daten zuzugreifen:

• [] & . - basierend auf den Spaltennamen
• .loc[] - basierend auf den Labels

³int32: Werte von −2.147.483.648 to +2.147.483.647; int64: Werte von −9.223.372.036.854.775.808
bis +9.223.372.036.854.775.807

10

11 / 15

• .iloc[] - basierend auf den numerischen Indizes

Eine Spalte

df2['Jahr']
oder df2.Jahr

Name
Donald 1934
Daisy 1937
Mickey 1928
Name: Jahr, dtype: int64

df2.loc[:, 'Jahr']

Name
Donald 1934
Daisy 1937
Mickey 1928
Name: Jahr, dtype: int64

df2.iloc[:, 0]

Name
Donald 1934
Daisy 1937
Mickey 1928
Name: Jahr, dtype: int64

Eine Zeile

nicht möglich

df2.loc['Donald', :]

Jahr 1934
Tier Ente
Name: Donald, dtype: object

df2.iloc[0, :]

11

12 / 15

Jahr 1934
Tier Ente
Name: Donald, dtype: object

Einzelne Zelle

df2['Jahr']['Donald']
oder df2.Jahr['Donald']

np.int64(1934)

df2.loc['Donald', 'Jahr']

np.int64(1934)

df2.iloc[0, 1]

'Ente'

Alle drei Methoden liefern das gleiche Ergebnis, wenn es darum geht, auf eine Spalte
zuzugreifen. Die Methode mit nur den eckigen Klammern ist dabei die kürzeste aber
auch die am wenigsten flexible Methode: Wie man sieht, ist es mit ihr nicht möglich, auf
eine Zeile zuzugreifen. Auch der Zugriff auf eine einzelne Zelle ist nur mit einem Umweg/
Workaround möglich. So nutzen wir erst die eckigen Klammern, um die Spalte Jahr als
Series zu extrahieren und dann die eckigen Klammern erneut, um innerhalb der Series
auf das Element Donald zuzugreifen.

Es fällt auf, dass nicht nur Spalten als Series extrahiert werden, sondern auch beim
Extrahieren einer Zeile eine Series zurückgegeben wird. Diese wird dann wie immer
vertikal ausgerichtet, wobei die ehemaligen Spaltennamen nun als Index verwendet
werden. Die Daten wurden also in gewisser Hinsicht rotiert bzw. transponiert.

Die Methoden .loc[] und .iloc[] sind sich bzgl. der Syntax sehr ähnlich, unterscheiden
sich aber in der Art und Weise, wie sie die Indizes interpretieren. .loc[] basiert auf den
Labels, während .iloc[] auf den numerischen Indizes basiert. .iloc[] ist daher die
effizientere/schnellere Methode, da sie am wenigsten Rechenleistung benötigt. In beiden
Methoden können zwei Argumente übergeben werden: das erste Argument bezieht sich
auf die Zeilen und das zweite auf die Spalten. Hier wurde jeweils ein : verwendet, um
alle Zeilen bzw. alle Spalten auszuwählen - also wie beim Slicing in Listen.

Ergänzende Infos zum :

12

13 / 15

Man kann auch nur ein Argument an .loc[] und .iloc[] übergeben. Das ist dann
automatisch das erste Argument, also das für Zeilen. In diesem Fall wird der
Standardwert für das zweite Argument, also das für die Spalten verwendet: ein :. Das
heißt, dass man anstatt df2.loc['Donald', :] auch einfach nur df2.loc['Donald']
schreiben könnte um zum selben Ergebnis zu kommen. Im Beispiel wurde das zweite
Argument aber dennoch explizit angegeben, um den Vergleich der beiden Fälle zu
erleichtern.

Zwar funktioniert der : hier wie gesagt wie beim Slicing in Listen, allerdings gibt es auch
einen Unterschied. Werden die Labels und nicht die numerischen Indizes genutzt, so
wird das Ende des Intervalls eingeschlossen. Hier der Unterschied:

liste = ["A", "B", "C"]
df3 = pd.DataFrame([1, 2, 3], index=liste)

Numerische Indizes schließen Intervallende aus

liste[0:2]

['A', 'B']

df3.iloc[0:2]

 0
A 1
B 2

Label Indizes schließen Intervallende ein

df3['A':'C']

 0
A 1
B 2
C 3

df3.loc['A':'C']

 0
A 1

13

14 / 15

B 2
C 3

Als letztes soll hier noch gezeigt werden wie man mehrere Spalten oder Zeilen auswählt
ohne Slicing zu verwenden. Dafür kann nämlich eine Liste von Spaltennamen oder
Zeilenlabels übergeben werden.

df

 Name Jahr Gewicht Größe Ursprung Füße
DONALD Donald 1934 50 1.2 Disney 2
DAISY Daisy 1937 40 1.1 Disney 2
MICKEY Mickey 1928 50 1.3 Disney 2

df[['Jahr', 'Ursprung']]

 Jahr Ursprung
DONALD 1934 Disney
DAISY 1937 Disney
MICKEY 1928 Disney

df.loc[:, ['Jahr', 'Ursprung']]

 Jahr Ursprung
DONALD 1934 Disney
DAISY 1937 Disney
MICKEY 1928 Disney

df.iloc[:, [1, 4]]

 Jahr Ursprung
DONALD 1934 Disney
DAISY 1937 Disney
MICKEY 1928 Disney

 Weitere Ressourcen

• Pandas Tutorial #1 - DataFrames (Python für Data Science) [nur bis 7:27]

14

https://youtu.be/Uu1Skwz98B4?si=qsToI1VV4-H6QoBG

15 / 15

Übungen
Führe folgenden Code aus und prüfe was die Befehle machen. Berechne außerdem
nach jeder Zeile die Summe von allen Elementen in daten.

daten = pd.Series([4, 9, -5, 2])
daten['d'] = 9
daten = daten.drop(2)

Summe nach Zeile 1: __

Summe nach Zeile 2: __

Summe nach Zeile 3: __

Erstelle einen DataFrame personen mit den Spalten Name, Alter und Ort. Die Daten
sollen folgende Personen enthalten: Den 34-jährigen Max Müller aus Hamburg, die 30-
jährige Trang Nguyen aus Stuttgart und den 1-jährigen Ivo Hernandez aus Köln. Sorge
außerdem manuell mit dem index= Argument dafür, dass die Initialen der Personen (also
z.B. MM) als Index/Zeilenlabel verwendet werden. Berechne dann basierend auf dem
DataFrame und mithilfe von .mean() das mittlere Alter der Personen. Berechne danach
nochmal das mittlere Alter, aber diesmal nur für die volljährigen Personen.

• (A) Geschafft

Erstelle einen DataFrame mit 8 Zeilen und 8 Spalten. Die Spaltennamen sollen Die
Buchstaben A-H und die Zeilenlabel die Zahlen 1-8 sein. Fülle die Zellen dieser Tabelle
so mit Buchstaben, dass es der Startaufstellung eines Schachbretts entspricht. Kürze
dabei die Bezeichnung der Figuren (König, Dame, Turm, Läufer, Springer, Bauer) immer
nur mit ihrem ersten Buchstaben ab. Felder/Zellen, auf denen keine Figur steht, sollen
einen Punkt enthalten. Nutze dann erst .loc[] und danach auch nochmal .iloc[], um
um jeweils eine 2x2 Tabelle zu extrahieren, in der ausschließlich die Läufer übrig
bleiben.

• (A) Geschafft

15

	Series
	Erstellen
	Indizierung
	Verwenden

	DataFrames
	Erstellen
	Indizierung

	Übungen

