) BioMath

Series & Dataframes
by Woche 6

Pandas stellt uns zwei wichtige Datenstrukturen zur Verfigung: Series und Dataframes.
Series sind dabei eher wie Spalten in einer Tabelle zu verstehen, wahrend Dataframes
die gesamte Tabelle reprasentieren.

import numpy as np
import pandas as pd

Series

Eine Series ist eine eindimensionale Datensammlungsstruktur. Nachdem wir bereits eine
Vielzahl von Datensammlungsstrukturen wie Listen, Tuples, Sets, Dictionaries und
numpy Arrays kennengelernt haben, stellt sich nun die berechtigte Frage:

Warum brauchen wir iiberhaupt eine weitere eindimensionale Datenstruktur wie
die pandas Series?

Jede dieser Strukturen bringt ihre eigenen Vorteile und Einschrankungen mit sich. Listen
und Tuples bieten Flexibilitat durch ihre Fahigkeit, heterogene Daten zu speichern,
wobei Tuples unveranderlich sind. Sets hingegen sind ideal fir die Verwaltung
einzigartiger Elemente, wahrend Dictionaries effizienten Zugriff auf Werte GUber Schlissel
ermdglichen. Alle diese Strukturen haben gemeinsam, dass sie in der Standardbibliothek
von Python verfugbar sind und grundlegende Funktionen fir die Datenspeicherung und -
manipulation bieten.

Mit der Einfihrung von numpy haben wir einen tiefen Einblick in die Handhabung
homogener Datensatze erhalten, insbesondere in Bezug auf numerische Berechnungen.
numpy Arrays revolutionieren die Art und Weise, wie wir mit grol3en Datenmengen
umgehen, durch ihre Effizienz und die Méglichkeit, komplexe mathematische
Operationen mit Leichtigkeit auszufiihren. Diese Arrays sind allerdings primar auf
numerische Daten ausgerichtet und bieten nicht dieselbe Flexibilitdt wie die eingebauten
Python-Sammlungen, wenn es um die Arbeit mit tabellarischen Daten geht, die sowohl
numerische als auch nicht-numerische Werte enthalten kénnen.

Hier setzt pandas mit seinen Series und DataFrames an, die speziell fur die Analyse und
Manipulation von realen Daten konzipiert wurden. Eine pandas Series ist mehr als nur
eine weitere eindimensionale Datenstruktur; sie ist eine naturliche Erweiterung eines
numpy Arrays, das nicht nur fur numerische Daten, sondern fur Daten jeglicher Art —
einschliellich Text und Zeiten — optimiert ist. Jedes Element in einer Series kann mit

1/15

) BioMath

einem Index versehen werden, der weit Uber die einfache numerische Indizierung
hinausgeht, was die Arbeit mit Daten wesentlich intuitiver und flexibler macht. Dartber
hinaus sind Series in der Lage, fehlende Daten auf eine Weise zu handhaben, die in
reinen numpy Arrays nicht direkt verfligbar ist.

Wie schon bei den numpy Arrays flir Zahlen ist ein signifikanter Vorteil der Series
gegenuber den herkdbmmlichen Sammlungsstrukturen ihre Integration in das pandas-
Okosystem, das reichhaltige Funktionen fiir Datenimport, -bereinigung, -manipulation
und -analyse bietet. Wahrend man mit Listen oder Tuples mihsam durch Daten iterieren
und manuelle Bereinigungen durchfuhren musste, ermdglichen Series und DataFrames
die Anwendung von hochgradig optimierten Operationen auf ganzen Datensatzen mit
minimalen Codezeilen.

Kurz gesagt, pandas Series flllen eine wichtige Luicke in der Python-Datenlandschaft,
indem sie die leistungsstarken numerischen Fahigkeiten von numpy mit der Flexibilitat
und Benutzerfreundlichkeit kombinieren, die fir die Arbeit mit realen, oft unvollstandigen
oder heterogenen Datensatzen erforderlich sind.

Erstellen

Eine Series kann mittels pd.Series() aus einer Vielzahl von Datenstrukturen erstellt bzw.
umgewandelt werden, darunter Listen, Tuples, Dictionaries und numpy Arrays.

Nach der Erstellung ordnet Pandas der gesamte Series einen spezifischen Datentyp
(dtype) zu, um die Natur der gespeicherten Informationen zu charakterisieren. So
werden beispielsweise Ganzzahlen/Integer als Int64, Gleitkommazahlen/Floats als
Float64, und Boolesche Werte/Booleans als bool typisiert. Darlber hinaus kénnen auch
spezielle Datentypen fir Datum und Zeit (datetime64), Zeitdifferenzen (timedelta64) und
Kategorien (category) verwendet werden, welche wir alle spater noch genauer
kennenlernen. All diese Datentypten unterstitzen eine effiziente Datenverarbeitung und
Analyse.

pd.Series([1, 2, 42])

0 1
1 2
2 42
dtype: int64

pd.Series(np.array([1.2, 3.4, 5]))

2/15

) BioMath

dtype: category
Categories (2, object): ['A', 'B']

Wenn eine Series jedoch Daten enthalt, die nicht eindeutig einem der spezifischen
Typen zugeordnet werden kdnnen, wie Textstrings oder Listen, verwendet Pandas den
Datentyp object. Dieser Catch-all-Typ* ermoéglicht die Speicherung von komplexen
Strukturen, macht Operationen aber potenziell langsamer und weniger speicher-effizient.

pd.Series(['A', 'B', 'Hello'l)

0 A
1 B
2 Hello

dtype: object

pd.Series([[1, 2], [3], [4, 51])

0 [1, 2]
1 [3]
2 [4, 5]

dtype: object

pd.Series([42, {'key': 'value'}, 3.14])

0 42
1 {'key': 'value'}
2 3.14

dtype: object

Vereinfacht ausgedriickt sind Series mit einem speziellen dtype eine Art “numpy Array
mit Index” - also mit erweiterten Funktionalitaten und Flexibilitat - wohingegen Series mit
dtype object eher nur wie eine “Liste mit Index” sind.

Es fallt auf, dass die Series veritkal ausgerichtet ist. Das bedeutet, dass die Daten in
einer Series in einer einzigen Spalte angeordnet sind, wobei jedes Element in der Spalte
eine Zeile reprasentiert. Dieses vertikale Format ist charakteristisch fur tabellarische

"“Catch-all-Typ”, wortlich Gbersetzt als “Fang-alles-Typ”, bezeichnet in der Programmierung einen
Datentyp, der als eine Art Auffangbecken fir Daten verschiedenster Art dient. In pandas erflllt der object
Datentyp diese Rolle, indem er es erméglicht, diverse Datenformen — von Zahlen und Texten bis hin zu
komplexeren Objekten wie Listen oder Dictionaries — innerhalb einer Series zu speichern. Diese
universelle Anwendbarkeit geht jedoch oft zu Lasten der Speicher- und Verarbeitungseffizienz,
besonders im Vergleich zu den spezifischeren, typisierten Alternativen.

4/15

) BioMath

Daten und erméglicht es, die Series als Grundlage (bzw. einzelne Spalte) fir die
Erstellung von DataFrames (mit mehreren Spalten) zu verwenden, die wir gleich
kennenlernen werden.

AulRerdem hat jeder Wert, also jede Zeile, einen Index. Der Index ist eine eindeutige
Kennzeichnung flr jede Zeile, die es ermdglicht, auf die Daten in der Series zuzugreifen
und sie zu manipulieren. In den Beispielen oben haben wir keinen Index vordefiniert,
sodass Pandas automatisch einen numerischen Index von 0 bis n-1 erstellt hat, wobei n
die Anzahl der Elemente in der Series ist. Gewissermalien war also die Indizierung bis
hierhin wie gehabt. Tatsachlich kann die Indizierung in Pandas jedoch viel flexibler
gestaltet werden und gleicht eher der Schlissel-Wert-Paar-Struktur eines Dictionaries.

Beim Erstellen einer Series aus einer Liste oder einem NumPy Array kann das Argument
index= verwendet werden, um einen expliziten Index anzugeben. Dieser Index kann aus
Zahlen, Strings oder Datumsangaben bestehen, wodurch die Datenzugriffe intuitiver und
flexibler werden. Man kann aber auch direkt ein Dictionary Ubergeben, wobei die Keys
des Dictionaries als Index verwendet werden.

pd.Series([10, 20, 30], index=['a', 'b', 'c'l])

a 10
b 20
C 30

dtype: int64

pd.Series({'a': 10, 'b': 20, 'c': 30})

a 10
b 20
C 30

dtype: int64

Indizierung

Wir kdbnnen dann den definierten Index verwenden, um auf die Daten zuzugreifen?.

artikel = pd.Series({'Burger': 4.99, 'Pommes': 2.99, 'Cola': 1.99})

2Aktuell ist auch moglich auf die Daten Uber den numerischen Index zuzugreifen, also z.B.
artikel[0], was Ubrigens mit einem Dictionairy nicht moglich ist. Allerdings wird dabei jetzt schon eine
FuturWarning ausgegeben, dass diese Art des Zugriffs in Zukunft nicht mehr unterstitzt wird. Es ist also
besser, sich jetzt schon an den Index zu gewdhnen.

5/15

) BioMath

artikel

Burger 4.99
Pommes 2.99
Cola 1.99
dtype: float64

artikel['Burger']
np.float64(4.99)
artikel['Pommes':'Cola']

Pommes 2.99
Cola 1.99
dtype: float64

Dariber hinaus konnen wir auch .1loc() und .iloc() verwenden, um auf die Daten
zuzugreifen. Diese Methoden fihren wir aber erst gleich fur die DataFrames ein, wo
man sie ebenfalls verwenden kann.

Verwenden

Abgesehen von den Indices/Labels verhalten sich Series wie numpy Arrays. Das
bedeutet, dass wir auch viele der bekannten numpy Funktionen (z.B. np.sum(series))
auf Series anwenden kdnnen. Gleichzeitig gibt es aber auch die “eingebauten”
Methoden, die speziell flr Series entwickelt wurden (z.B. series.sum()). In diesem
Beispiel macht es keinen Unterschied, ob np.sum(artikel) oder artikel.sum() genutzt
wird, denn beide liefern das gleiche Ergebnis. Jedoch, bei komplexeren
Datenoperationen kann der Unterschied ins Gewicht fallen: artikel.sum() ignoriert
beispielsweise standardmaRig Fehlwerte, wahrend np.sum(artikel) ggf. schneller ist.
Man sollte sich Ubrigens generell mit dem Gedanken anfreunden, dass es beim
Programmieren nicht immer nur eine einzige “richtige” Losung gibt.

np.sum(artikel)
np.float64(9.97)

artikel.sum()

6/15

< BioMath

np.float64(9.97)

DataFrames

Ein DataFrame ist eine zweidimensionale Datenstruktur, die aus einer Sammlung von
Series besteht. Jede Series in einem DataFrame reprasentiert eine Spalte, wobei jede
Zeile in einem DataFrame eine separate Beobachtung darstellt. DataFrames sind das
Herzstiick des pandas-Okosystems und bilden die Grundlage fiir die meisten
Datenanalysen und -manipulationen.

Erstellen

Hier ist nochmal die Tabelle, die wir im Dictionary-Kapitel erstellt haben - diesmal einmal
als Dictionary und einmal als DataFrame:

dict tabelle = {'Name': ['Donald', 'Daisy', 'Mickey'l],

'Jahr': [1934, 1937, 1928],
'Tier': ['Ente', 'Ente', 'Maus']}

dict tabelle

{'Name': ['Donald', 'Daisy', 'Mickey'], 'Jahr': [1934, 1937, 1928], 'Tier':
['Ente', 'Ente', 'Maus'l}

pd.DataFrame(dict tabelle)

Name Jahr Tier
0 Donald 1934 Ente
1 Daisy 1937 Ente
2 Mickey 1928 Maus

77115

< BioMath

1 Hinweis zur Ausgabe von DataFrames

In Jupyter Notebook und Jupyter Lab macht es einen Unterschied ob man sich einen
DataFrame mit print(df) oder nur df ausgeben lasst, da letzteres etwas “schoner”
mit html formatiert wird (siehe Screenshot hierunter). Hier in der Online-
Dokumentation wird aber immer die nicht-formatierte Ausgabe-Form zu sehen sein,
die man mit print(df) erhalt - auch wenn der gezeigte Befehl df ist und demnach
beim Ausflihren in euren Jupyter Lab Umgebungen die formatierte Ausgabe
erscheinen wird.

import pandas as pd

dict_tabelle = {'Name': ['Donald', 'Daisy', '"Mickey'],
'Jahr': [1934, 1937, 1928],
'Tier': ['Ente', 'Ente’', 'Maus']}

df = pd.DataFrame(dict_tabelle)

Name Jahr Tier
2@ Donald 1934 Ente
1 Daisy 1937 Ente
2 Mickey 19258 Maus

[3]: df -‘

[3]: Name Jahr Tier

0 Donald 1334 Ente
1 Daisy 1937 Ente

2 Mickey 1928 Maus

Es ist also eine klare Tabellenstruktur zu erkennen - die Keys wurden zu Spaltennamen
und die Values zum Spalteninhalt. Auch DataFrames haben Indices, die die Zeilen
identifizieren - allerdings haben wir oben noch keine expliziten Indices definiert, sodass
Pandas wieder einen numerischen Index von 0 bis n-1 erstellt hat. Flr diese Tabelle
ware es wohl angebrachter, die Namen als Index zu verwenden. Hier zwei
Madoglichkeiten, wie das gemacht werden kann: Namen als Indizes zusatzlich zur Namen-
Spalte hinzufligen oder die Namen-Spalte als Index definieren.

8/15

dfl = pd.DataFrame(dict_tabelle,
index=dict tabelle['Name']

)

print(dfl)
Name

Donald Donald

Daisy Daisy

Mickey Mickey

df2 =

df2 =

print(df2)
Jahr

Name

Donald 1934

Daisy 1937

Mickey 1928

Beim Erzeugen eines DataFrames aus einem Dictionary konnen die Werte Listen,
Tuples, numpy arrays oder pandas Series sein, solange deren Langen gleich sind. Als
Ausnahme kann man auch Skalarwerte verwenden, die dann fir alle Zeilen gelten. In
folgendem Beispiel sind moglichst viele verschiedene Datentypen in einem Dictionary
enthalten, um dies zu demonstrieren. Auch lasst sich erkennen, dass der Index aus der
einen pandas Series fur den DataFrame Gbernommen wird. Mit der Methode . types
kann angezeigt werden welcher Datentyp in welcher Spalte vorliegt.

dict tabelle 2
'Name': ['Do
'Jahr': (193

‘Ursprung’:
'"Fike' : 2
}

df = pd.DataFrame(dict tabelle 2)

df

Jahr
1934
1937
1928

Tier

Ente
Ente
Maus

= {
nald',

4, 1937,
'Gewicht': np.array([50, 40, 50]),
'GroBe': pd.Series([1.2, 1.1, 1.3], index

Tier
Ente
Ente
Maus

pd.DataFrame(dict tabelle)
df2.set index('Name')

'Daisy’,
1928),

'Disney’,

'Mickey'],

['DONALD", '"MICKEY']),

) BioMath

9/15

Name Jahr Gewicht GroBe Ursprung FiiBe

DONALD Donald 1934 50 1.2 Disney 2
DAISY Daisy 1937 40 1.1 Disney 2
MICKEY Mickey 1928 50 1.3 Disney 2
df.dtypes

Name object

Jahr int64

Gewicht int64

GroRe float64

Ursprung object

FiiBe int64

dtype: object

1 Details fur Interessierte

Pandas wahlt den Datentyp fiir jede Serie oder Spalte in einem DataFrame
basierend auf den Daten, die sie enthalt, um eine optimale Balance zwischen
Speichereffizienz und Datenprazision zu gewahrleisten. Die Bezeichnungen int64
und int32 reprasentieren Ganzzahltypen/Integer mit 64 bzw. 32 Bit. int64 kann
einen groReren Wertebereich® darstellen und ist die Standardwahl auf 64-Bit-
Systemen, um die vollstandige Prazision und GréRenkapazitat dieser Plattformen zu
nutzen. int32 hingegen verwendet weniger Speicherplatz und kann auf Systemen
mit geringeren Ressourcen oder bei Datensatzen, bei denen der grofiere
Wertebereich von int64 nicht bendtigt wird, eine effiziente Wahl darstellen. Die
Auswahl zwischen diesen Datentypen erfolgt automatisch, kann aber auch manuell
angepasst werden, um spezifische Anforderungen an die Speichergrofe oder
Kompatibilitat mit externen Systemen zu erfillen.

Indizierung

Nun kénnen wir also auch mittels Index auf die Daten zugreifen. Dabei ist zu beachten,
dass die Indizierung in DataFrames etwas komplexer ist als in Series, da wir sowohl auf
die Zeilen als auch auf die Spalten zugreifen kénnen. Prinzipiell gibt es vier Methoden,
um auf die Daten zuzugreifen:

* [1& . - basierend auf den Spaltennamen
* .loc[] - basierend auf den Labels

3int32: Werte von —2.147.483.648 to +2.147.483.647; int64: Werte von -9.223.372.036.854.775.808
bis +9.223.372.036.854.775.807

10

) BioMath

10/15

) BioMath

* .iloc[] - basierend auf den numerischen Indizes

Eine Spalte

df2['Jahr']

Name

Donald 1934

Daisy 1937

Mickey 1928

Name: Jahr, dtype: int64

df2.loc[:, 'Jahr']

Name
Donald 1934
Daisy 1937

Mickey 1928
Name: Jahr, dtype: int64

df2.iloc[:, 0]

Name
Donald 1934
Daisy 1937

Mickey 1928
Name: Jahr, dtype: int64

Eine Zeile

df2.loc['Donald', :1

Jahr 1934
Tier Ente
Name: Donald, dtype: object

df2.iloc[0, :]

11

11/15

) BioMath

Jahr 1934
Tier Ente
Name: Donald, dtype: object

Einzelne Zelle

df2['Jahr']['Donald']

np.int64(1934)

df2.loc['Donald', 'Jahr']

np.int64(1934)

df2.iloc[0, 1]

'"Ente’

Alle drei Methoden liefern das gleiche Ergebnis, wenn es darum geht, auf eine Spalte
zuzugreifen. Die Methode mit nur den eckigen Klammern ist dabei die kurzeste aber
auch die am wenigsten flexible Methode: Wie man sieht, ist es mit ihr nicht méglich, auf
eine Zeile zuzugreifen. Auch der Zugriff auf eine einzelne Zelle ist nur mit einem Umweg/
Workaround moglich. So nutzen wir erst die eckigen Klammern, um die Spalte Jahr als
Series zu extrahieren und dann die eckigen Klammern erneut, um innerhalb der Series
auf das Element Donald zuzugreifen.

Es fallt auf, dass nicht nur Spalten als Series extrahiert werden, sondern auch beim
Extrahieren einer Zeile eine Series zurlickgegeben wird. Diese wird dann wie immer
vertikal ausgerichtet, wobei die ehemaligen Spaltennamen nun als Index verwendet
werden. Die Daten wurden also in gewisser Hinsicht rotiert bzw. transponiert.

Die Methoden .1loc[] und .iloc[] sind sich bzgl. der Syntax sehr ahnlich, unterscheiden
sich aber in der Art und Weise, wie sie die Indizes interpretieren. .1loc[] basiert auf den
Labels, wahrend .iloc[] auf den numerischen Indizes basiert. .iloc[] ist daher die
effizientere/schnellere Methode, da sie am wenigsten Rechenleistung bendétigt. In beiden
Methoden kénnen zwei Argumente Ubergeben werden: das erste Argument bezieht sich
auf die Zeilen und das zweite auf die Spalten. Hier wurde jeweils ein : verwendet, um
alle Zeilen bzw. alle Spalten auszuwahlen - also wie beim Slicing in Listen.

Ergédnzende Infos zum :

12

12/15

) BioMath

Man kann auch nur ein Argument an .loc[] und .iloc[] Ubergeben. Das ist dann
automatisch das erste Argument, also das fir Zeilen. In diesem Fall wird der
Standardwert flr das zweite Argument, also das fur die Spalten verwendet: ein :. Das
heillt, dass man anstatt df2.loc['Donald', :] auch einfach nur df2.loc['Donald']
schreiben kdnnte um zum selben Ergebnis zu kommen. Im Beispiel wurde das zweite
Argument aber dennoch explizit angegeben, um den Vergleich der beiden Falle zu
erleichtern.

Zwar funktioniert der : hier wie gesagt wie beim Slicing in Listen, allerdings gibt es auch
einen Unterschied. Werden die Labels und nicht die numerischen Indizes genutzt, so
wird das Ende des Intervalls eingeschlossen. Hier der Unterschied:

'Liste = [IIAII' IIBII’ IICII]
df3 = pd.DataFrame([1l, 2, 3], index=liste)

Numerische Indizes schlieRen Intervallende aus

liste[0:2]

['A", 'B']

df3.iloc[0:2]

o >
N P ©

Label Indizes schlieRen Intervallende ein

df3['A':"'C']

o
W NP OO

df3.loc['A':'C']

13

13/15

) BioMath

O W
w N

Als letztes soll hier noch gezeigt werden wie man mehrere Spalten oder Zeilen auswahlt
ohne Slicing zu verwenden. Dafir kann namlich eine Liste von Spaltennamen oder
Zeilenlabels Ubergeben werden.

df

Name Jahr Gewicht GroéBe Ursprung FiiBe
DONALD Donald 1934 50 1.2 Disney 2
DAISY Daisy 1937 40 1.1 Disney 2
MICKEY Mickey 1928 50 1.3 Disney 2

df[['Jahr', 'Ursprung']]

Jahr Ursprung
DONALD 1934 Disney
DAISY 1937 Disney
MICKEY 1928 Disney

df.loc[:, ['Jahr', 'Ursprung']]

Jahr Ursprung
DONALD 1934 Disney
DAISY 1937 Disney
MICKEY 1928 Disney

df.iloc[:, [1, 41]

Jahr Ursprung
DONALD 1934 Disney
DAISY 1937 Disney
MICKEY 1928 Disney

© Weitere Ressourcen

» Pandas Tutorial #1 - DataFrames (Python fir Data Science) [nur bis 7:27]

14

14 /15

https://youtu.be/Uu1Skwz98B4?si=qsToI1VV4-H6QoBG

) BioMath

Ubungen
Flhre folgenden Code aus und prife was die Befehle machen. Berechne au3erdem
nach jeder Zeile die Summe von allen Elementen in daten.

daten = pd.Series([4, 9, -5, 2])
daten['d'] = 9
daten = daten.drop(2)

Summe nach Zeile 1: __
Summe nach Zeile 2:
Summe nach Zeile 3: __

Erstelle einen DataFrame personen mit den Spalten Name, Alter und ort. Die Daten
sollen folgende Personen enthalten: Den 34-jahrigen Max Muller aus Hamburg, die 30-
jahrige Trang Nguyen aus Stuttgart und den 1-jahrigen Ivo Hernandez aus Koln. Sorge
auflerdem manuell mit dem index= Argument dafir, dass die Initialen der Personen (also
z.B. mv) als Index/Zeilenlabel verwendet werden. Berechne dann basierend auf dem
DataFrame und mithilfe von .mean () das mittlere Alter der Personen. Berechne danach
nochmal das mittlere Alter, aber diesmal nur fiir die volljahrigen Personen.

* (A) Geschafft

Erstelle einen DataFrame mit 8 Zeilen und 8 Spalten. Die Spaltennamen sollen Die
Buchstaben A-H und die Zeilenlabel die Zahlen 1-8 sein. Fllle die Zellen dieser Tabelle
so mit Buchstaben, dass es der Startaufstellung eines Schachbretts entspricht. Kurze
dabei die Bezeichnung der Figuren (Kénig, Dame, Turm, Laufer, Springer, Bauer) immer
nur mit ihrem ersten Buchstaben ab. Felder/Zellen, auf denen keine Figur steht, sollen
einen Punkt enthalten. Nutze dann erst .1oc[] und danach auch nochmal .iloc[], um
um jeweils eine 2x2 Tabelle zu extrahieren, in der ausschlieRlich die Laufer Gbrig
bleiben.

* (A) Geschafft

15

15/15

	Series
	Erstellen
	Indizierung
	Verwenden

	DataFrames
	Erstellen
	Indizierung

	Übungen

