< BioMath

Daten importieren

by Woche 7

Wir haben gerade erst DataFrames kennengelernt und missen noch so einige Dinge
Uber deren Handhabung lernen. Gleichzeitig dirfte es vielen schon in den Fingern
kribbeln, endlich mal mit “echten” Daten zu arbeiten. Denn natlrlich werden in realen
Projekte die Daten meist nicht in Python erzeugt, sondern aus bereits vorhandenen
Quellen importiert. Somit wollen wir lernen Daten aus zumindest einigen gangigen
dieser Quellen zu importieren.

import numpy as np
import pandas as pd

CSV-Dateien

CSV-Dateien sind wohl die am haufigsten verwendete Art von Dateien, um tabellarische
Daten zu speichern. CSV steht flr “Comma Separated Values” und bedeutet, dass die

Werte in der Datei durch Kommas getrennt sind. Vorteile von CSV sind, dass sie einfach
zu erstellen und zu lesen sind und, dass sie von vielen Programmen unterstiutzt werden.

So lasst sich also beispielsweise folgende Tabelle...

Land Gericht Kurzbeschreibung
Vietnam Bun cha Gegrilltes Schweinefleisch mit Reisnudeln und
Krautern
Italien Pizza Napoli Pizza mit Kapern, Sardellen und Oliven
Japan Sushi Reisballchen oder -rollen mit Fisch oder Gemuse
Mexiko Chiles en Geflillte Poblano-Paprika mit Walnusssauce und
nogada Granatapfelkernen

...s0 als CSV-Datei speichern:

Land,Gericht,Kurzbeschreibung

Vietnam,Bun cha,"Gegrilltes Schweinefleisch mit Reisnudeln und Krautern"
Italien,Pizza Napoli,"Pizza mit Kapern, Sardellen und Oliven"

Japan, Sushi, "Reisballchen oder -rollen mit Fisch oder Gemiise"
Mexiko,Chiles en nogada,"Geflillte Poblano-Paprika mit Walnusssauce und
Granatapfelkernen"

1/10



In der Regel sind also die Spaltennamen in der ersten Zeile und die Werte in den
folgenden Zeilen. Die Werte sind durch Kommas getrennt und Texte, die Kommas
enthalten, werden in Anfuhrungszeichen gesetzt.

Tatsachlich ist es leider nicht immer genau so, da es keine feste Norm gibt was eine
CSV-Datei ist. Erstellt ihr beispielsweise eine Tabelle in Microsoft Excel und speichert sie
dann als .csv Datei ab, so seht ihr schon beim Speichern, dass dort als
Auswahlmaoglichkeit steht CSV (Trennzeichen-getrennt) (*.csv), also nicht Komma-
getrennt, sondern Trennzeichen-getrennt. Offnet ihr dann die gespeicherte Datei in
einem Texteditor, so seht ihr, dass dort tatsachlich kein Komma, sondern ein Semikolon
als Trennzeichen verwendet wird. Auch das gilt also als CSV-Datei und eben diese
fehlende Standardisierung ist ein Nachteil von CSV-Dateien.

Import

Zum Importieren von CSV-Dateien in einen DataFrame verwenden wir die Funktion
pd.read csv(). Diese Funktion hat viele Argumente, aber das wichtigste ist das erste:
filepath_or buffer. Hier gebt ihr den Pfad zur CSV-Datei an, die ihr importieren wollt.
Um den Einstieg moglichst leicht zu machen, wollen wir hier keinen lokalen Pfad,
sondern eine URL angeben. Das heil}t, dass der Pfad nicht zu einer Datei fuhrt, die auf
meinem oder eurem Computer liegt, sondern zu einer CSV-Datei, die online verfligbar
ist. So kénnt auch ihr diesen Code sofort laufen lassen - gegeben ihr habt eine
funktionierende Internetverbindung. lhr kénnt Ubrigens den Link, der hierunter in die
Variable pfad zu csv_datei gespeichert wird, auch tatsachlich in eurem Browser 6ffnen
und die Daten sehen.

pfad zu csv_datei = 'https://raw.githubusercontent.com/SchmidtPaul/
ExampleData/main/plant growth/PlantGrowth.csv'
df = pd.read csv(pfad zu csv_datei)

df

rownames weight group
0 1 4.17 ctrl
1 2 5.58 ctrl
2 3 5.18 ctrl
3 4 6.11 ctrl
4 5 4.50 ctrl
5 6 4.61 ctrl
6 7 5.17 ctrl
7 8 4.53 ctrl
8 9 5.33 ctrl
9 10 5.14 ctrl
10 11 4.81 trtl
11 12 4.17 trtl

) BioMath

2/10



12 13 4.41 trtl
13 14 3.59 trtl
14 15 5.87 trtl
15 16 3.83 trtl
16 17 6.03 trtl
17 18 4.89 trtl
18 19 4.32 trtl
19 20 4.69 trtl
20 21 6.31 trt2
21 22 5.12 trt2
22 23 5.54 trt2
23 24 5.50 trt2
24 25 5.37 trt2
25 26 5.29 trt2
26 27 4.92 trt2
27 28 6.15 trt2
28 29 5.80 trt2
29 30 5.26 trt2

Naturlich kann man die URL auch direkt in pd.read csv() einfugen, ohne sie vorher in
einer Variable (pfad zu csv_datei) zu speichern.

Da wir ab jetzt 6fter Tabellen anschauen, die mehr als nur eine Handvoll Zeilen haben,
ist es in der Regel effizienter, sich nur die ersten paar Zeilen anzeigen zu lassen. Das
geht mit der Funktion .head(), welche standardmagig nur die ersten 5 Zeilen anzeigt. Ihr
kdénnt aber auch eine andere Zahl angeben, um mehr oder weniger Zeilen anzuzeigen.
So kdénnt ihr beispielsweise die ersten 10 Zeilen anzeigen lassen, indem ihr df.head(10)
schreibt. Und da man so quasi den “Kopf’ der Daten betrachtet, gibt es auch eine
Funktion .tail(), die den “Schwanz” der Daten anzeigt, also die letzten Zeilen.

df.head()

rownames weight group

0 1 4.17 ctrl
1 2 5.58 ctrl
2 3 5.18 ctrl
3 4 6.11 ctrl
4 5 4.50 ctrl
df.tail(3)

rownames weight group
27 28 6.15 trt2

) BioMath

3/10



28 29 5.80 trt2
29 30 5.26 trt2

Wie schon gesagt, gibt es viele Argumente, die ihr pd.read csv() Ubergeben kdnnt. Hier
ein Screenshot der Online-Dokumentation:

pandas.read_csv

pandas.read_csv ( Filepath_or_buffer, *, sep= NoDefault.no_default,

delimiter=None, header='infer', names=_NoDefault.no_default, index_coel=None,
usecols=None, dtype=None, engine=None, converters=None, true_values=None,
false_values=None, skipinitialspace=False, skiprows=None, skipfooter=0,
nrows=None, na_values=None, keep default_na=-True, na_filter=True

> — ¥ - — 2 ]
verbose= NoDefault.no default, skip blank_Lines=True, parse_dates=None,
infer_datetime_format fault.no default, keep_date_col= NoDefaul t.no

12, dayfirst=False,

r

cache_dates=True, iterator-False, chunksize=-None, compression="infe

rr

12, quotechar= y quoting=0,

float_precision=None, storage_options=None,

Quelle: pandas.pydata.org

Da wir eben erfolgreich eine CSV-Datei importiert haben, waren also die Standardwerte/
Defaults fur die Argumente ausreichend. Nun wollen wir aber eine zweite Version der
Daten importieren, die zwar ebenfalls in einer CSV-Datei gespeichert sind, aber uniblich
formatiert sind. Zum Vergleich sind hier die ersten 6 Zeilen der beiden CSV-Dateien -
links die erste, rechts die zweite:

rownames ,weight, group
1,4.17,ctrl
2,5.58,ctrl
3,5.18,ctrl
4,6.11,ctrl
5,4.5,ctrl

Hier sind meine Daten
rownamesWUFFweightWUFFgroup
1WUFF4, 17WUFFctrl

) BioMath

4/10


https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html

2WUFF5, 58WUFFctrl
3WUFF5, 18WUFFctrl
4WUFF6, 11IWUFFctrl

Wairden wir wieder versuchen die Datei mit pd. read csv() und ohne weitere Argumente
zu importieren, so wirden wir eine Fehlermeldung erhalten. Das liegt daran, dass die
Datei nicht dem Standardformat entspricht. Wir missen also die Argumente von
pd.read csv() SO anpassen, dass sie zu den Daten passen. In diesem Fall sollten wir
mindestens drei Dinge tun:

* skiprows=1: Die erste Zeile enthalt keine Daten, sondern nur den Text “Hier sind meine
Daten”. Wir wollen also, dass pd.read csv() diese eine, erste Zeile liberspringt.

* sep="WUFF': Die Werte sind nicht durch Kommas, sondern durch “WUFF” getrennt. Das
kdnnen wir pd. read_csv() mitteilen, indem wir das Argument sep (Separator)
verwenden.

* decimal="', ': In der zweiten Datei werden die Dezimalzahlen mit einem Komma statt
einem Punkt geschrieben, also 4,17 anstatt 4.17. Das ist im deutschsprachigen Raum
die Norm, aber weltweit gesehen eher unublich.

pfad 2 = 'https://raw.githubusercontent.com/SchmidtPaul/ExampleData/main/
plant growth/PlantGrowth2.csv'

pd.read csv(pfad 2)

pandas.errors.ParserError: Error tokenizing data. C error: Expected 1 fields
in line 3, saw 2

df2 = pd.read csv(
pfad 2,
skiprows=1,
sep="WUFF"',
decimal=","

)

df2.head()

rownames weight group

0 1 4.17 ctrl
1 2 5.58 ctrl
2 3 5.18 ctrl

) BioMath

5/10



) BioMath

3 4 6.11 ctrl
4 5 4.50 ctrl

Nun wird man WUFF wohl eher nicht als Trennzeichen in einer CSV-Datei finden, aber es
gibt mehr Trennzeichen als man glaubt. Oben bereits erwahnt ist das Semikolon ; und
eine ebenfalls gangiges Dateiformat ist die Tabulator-getrennte Text-Datei (. txt), bei der
die Werte durch Tabs getrennt sind. Das Argument sep kann also auch ein
Tabulatorzeichen sein, das man mit \t angibt.

sep=";"

rownames ;weight;group
1;4.17;ctrl
2;5.58;ctrl
3:;5.18;ctrl
4;6.11;ctrl
5;4.5;ctrl

sep="\t'

rownames weight group
4.17 ctrl

5.58 ctrl

5.18 ctrl

6.11 ctrl

4.5 ctrl

u b WN R

Letztendlich ist es auch bzgl. anderer Abweichungen von der Norm gut zu wissen, dass
pd.read csv() so flexibel ist. Die eigentliche Datei vorher/auRerhalb von Python
reparieren zu massen ist also in den meisten Fallen nicht notwendig.

Lokale Dateien

Natlrlich kann und muss man auch lokale Dateien importieren, also Dateien die auf der
Festplatte des eigenen Computers gespeichert sind. Prinzipiell ist hier alles gleich - bis
auf den Pfad. Ein Pfad zu einer Datei namens datei.csv, die auf dem Desktop liegt,
kénnte je nach Betriebssystem so aussehen:

* Windows: C:\Users\Benutzername\Desktop\datei.csv
* macOS: /Users/Benutzername/Desktop/datei.csv
* Linux: /home/Benutzername/Desktop/datei.csv

Und tatsachlich muss man dann statt der URL lediglich diesen Pfad in pd.read csv()
einfligen und fertig. Das Problem bei diesen Pfaden ist aber, dass sie nicht portabel

6/10



) BioMath

sind. Das heil3t, dass sie nur auf dem Computer funktionieren, auf dem sie erstellt
wurden. Wenn ihr also euren Code an jemand anderen weitergebt, dann wird dieser
Pfad nicht funktionieren. Ebenso wird der Beispielcode oben nicht bei euch funktionieren
selbst wenn ihr eine datei.csv auf eurem Desktop gespeichert habt und den Pfad flr
das korrekte Betriebssystem kopiert, weil ihr wahrscheinlich nicht als “Benutzername”
angemeldet seid.

In diesem Video wird gezeigt wie man eine lokale Datei in Python einliest:

https://www.youtube.com/embed/xp76FTNkOdQ?si=bu_TOq-GS7m0DsVO

1 Dateipfad auf Mac kopieren

Um einen Dateipfad auf dem Mac zu kopieren, kénnt ihr laut dieser Quelle wie folgt
vorgehen: “Offne im ersten Schritt ein Finder-Fenster, indem du im Dock auf das
Finder-Symbol klicken. Navigiere anschlieBend zu dem gewiinschten Ordner oder
der Datei und halte dort die Steuertaste (ctrl/control) gedriickt, wahrend du den
Ordner oder die Datei anklickst. Alternativ kannst du auch einfach einen Rechtsklick
vornehmen, um das Kontextmendi aufzurufen. Driicke jetzt die Optionstaste (alt) auf
der Tastatur. Dies dndert einige Optionen des Kontextmendis und erlaubt dir damit
den Datei- oder Ordnerpfad (iber die Option ,,Datei-/Ordnername” als Pfadname
kopieren*” zu kopieren. Der Pfadname wird in die Zwischenablage libernommen und
kann mit die Tastenkombination Befehlstaste (cmd) + (v) wieder eingefiigt werden.”

Excel

Excel-Dateien sind ebenfalls eine haufige Art von Dateien, um tabellarische Daten zu
speichern. Excel ist ein sehr machtiges Programm und kann viele verschiedene Arten
von Daten speichern. Die einfachste Art von Excel-Dateien sind .x1s und .x1sx

Dateien. .x1s Dateien sind die altere Version und .x1sx Dateien sind die neuere Version.
Ein Grund fir die Popularitat von Excel-Dateien ist, dass sie von sehr vielen Anwendern
und Anwenderinnen verwendet werden - also auch von denen, die keine Ahnung von
Programmierung haben. In einer Excel-Datei wird im Vergleich zu einer CSV-Datei
natirlich noch mehr Information gespeichert, wie beispielsweise die Schriftart, die Farbe,
die GréRe und die Ausrichtung des Textes. Allein schon die Mdglichkeit mehrere
Tabellenblatter in einer Datei zu haben, sollte zeigen, dass Excel-Dateien komplexer
sind als CSV-Dateien. Dennoch ist es natirlich notwendig und mdglich, Daten aus
Excel-Dateien in Python zu importieren und zwar z.B. mit der Funktion pd. read excel().
Allerdings funktioniert der Import von Excel-Dateien nicht so reibungslos direkt Gber eine
URL wie bei CSV-Dateien. |hr misst also die Datei herunterladen und lokal speichern,
um sie dann zu importieren. Die Datei mit der wir hier arbeiten, kann hier
heruntergeladen werdem.

7/10


https://www.youtube.com/embed/xp76FTNkOdQ?si=bu_TOq-GS7m0DsVO
https://www.maclife.de/ratgeber/kopiert-man-einen-datei-oder-ordnerpfad-am-mac-10076102.html
https://github.com/SchmidtPaul/ExampleData/blob/main/plant_growth/PlantGrowthExcel.xlsx
https://github.com/SchmidtPaul/ExampleData/blob/main/plant_growth/PlantGrowthExcel.xlsx

1 Download einzelner Dateien von GitHub

GitHub lernen wir spater noch genauer kennen. Sehr vereinfacht ausgedrickt ist es
eine Plattform, auf der man u.a. Dateien speichern und teilen kann. Der oben

Diese liegt im Ordner plant growth innerhalb des Repositories ExampleData des
GitHub Accounts SchmidtPaul.

Um die Datei herunterzuladen,

* klickt auf das Download-Symbol rechts
« oder klickt auf die drei Punkte ... oben rechts und dann auf Download
» oder driickt Strg + shift + s

ExampleData / plant_growth / PlantGrowthExcel.xlIsx

’%) SchmidtPaul

Code Blame

genannte Link fihrt euch zu einer Datei auf GitHub, ndmlich PlantGrowthExcel.x1sx.

Speichert die Datei in einem Ordner eurer Wahl und gebt den Pfad zu dieser Datei in
pd.read excel() an. Passend zum obigen Video ist der Pfad bei mir wieder wie folgt:

pfad zu excel datei = 'C:/Users/PythonKurs/Desktop/Python Kurs/02 JupyterLab/
PlantGrowthExcel.xlsx"

Wenn wir die die Datei also nun importieren, so erhalten wir folgendes Ergebnis:

df = pd.read excel(pfad zu excel datei)
df

Hallo!
O Die Daten befinden sich auf dem Tabellenblatt ...

Das sieht eigenartig aus. Der Grund ist, dass die Daten auf dem zweiten Tabellenblatt
namens “Daten” liegen, standardmallig aber das erste Tabellenblatt importiert wird.

< BioMath

8/10



Offnet an dieser Stelle ruhig mal die Excel-Datei in Excel um euch die Tabellenblatter
selbst anzuschauen. Schliel3t die Datei danach aber wieder - es kann vorkommen, dass
Python die Datei nicht 6ffnen kann, wenn sie bereits in einem anderen Programm
geoffnet ist.

Wir versuchen es also erneut und geben diesmal explizit mit dem Argument sheet name=
an, dass wir das Tabellenblatt mit dem Namen “Daten” importieren wollen und dann
klappt es auch:

df = pd.read excel(pfad zu excel datei, sheet name='Daten')

df

rownames weight group
0 1 4.17 ctrl
1 2 5.58 ctrl
2 3 5.18 ctrl
3 4 6.11 ctrl
4 5 4.50 ctrl
5 6 4.61 ctrl
6 7 5.17 ctrl
7 8 4.53 ctrl
8 9 5.33 ctrl
9 10 5.14 ctrl
10 11 4.81 trtl
11 12 4.17 trtl
12 13 4.41 trtl
13 14 3.59 trtl
14 15 5.87 trtl
15 16 3.83 trtl
16 17 6.03 trtl
17 18 4.89 trtl
18 19 4.32 trtl
19 20 4.69 trtl
20 21 6.31 trt2
21 22 5.12 trt2
22 23 5.54 trt2
23 24 5.50 trt2
24 25 5.37 trt2
25 26 5.29 trt2
26 27 4.92 trt2
27 28 6.15 trt2
28 29 5.80 trt2
29 30 5.26 trt2

) BioMath

9/10



Relative Pfade

Wie schon erwahnt, ist es nicht der beste Ansatz, die lokalen Pfade so wie oben
anzugeben. Solche Pfade heiflen absolute Pfade, weil sie den genauen Pfad von der
Wurzel des Dateisystems bis zur Datei angeben. Die Alternative sind relative Pfade. Ein
relativer Pfad ist ein Pfad, der relativ zu einem anderen Pfad ist und wenn ihr in einem
Jupyter Notebook arbeitet, dann sind die Pfade relativ zum Speicherort/Pfad des
Notebooks. Ihr kénnt also den Pfad zur Datei relativ zum Pfad des Notebooks angeben.

* Liegt eine Datei datei.csv also im gleichen Ordner wie das Notebook, dann kénnt ihr
einfach den Dateinamen angeben: pd.read csv('datei.csv').

* Liegt eine Datei datei.csv in einem Unterordner namens Datenordner, dann kénnt ihr
den Pfad zum Unterordner und den Dateinamen angeben: pd.read csv('Datenordner/
datei.csv')

* Liegt eine Datei datei.csv im Ubergeordneten Ordner, dann konnt ihr ../ verwenden,
um einen Ordner nach oben zu gehen: pd.read csv('../datei.csv"')

Relative Pfade sind demnach portabler und flexibler als absolute Pfade. |hr kénnt euren
Code also an jemand anderen weitergeben und er/sie kann ihn ohne Anderungen
ausflihren, solange die Dateien im gleichen Verzeichnis bzw. an den gleichen Positionen
relativ zueinander liegen.

Ubungen

Man kann anstelle des Tabellenblatt-Namen (als String) auch die Nummer/den Index
des Tabellenblatts (als Zahl) angeben. Welche Nummer misste ich demnach angeben
um ebenfalls das “Daten” Tabellenblatt aus der oben genannten Excel-Datei zu
importieren? (Hinweis: Auch hier beginnt Pyhton bei 0 zu zahlen.)

pd.read excel(pfad zu excel datei, sheet name=_)

Probiere aus was passiert, wenn du jeweils eins der folgenden Argumente zusatzlich in
pd.read excel(pfad zu excel datei, sheet name='Daten') verwendest:

e names=['Varl', 'xxxx']
e usecols='B:C'
e skiprows=[0,1], header=None

* (A) Geschafft

10

) BioMath

10/10



	CSV-Dateien
	Import
	Lokale Dateien


	Excel
	Relative Pfade
	Übungen

