< BioMath

Strings & Method Chaining

by Woche 7

Ein Thema, das wir relativ lange aufgeschoben bzw. nur stiefmutterlich behandelt haben
sind Strings, also Zeichenketten, also Buchstaben/Symbole wie 'Hallo Welt!' oder
'Al b'. Das wollen wir jetzt nachholen.

Strings kann man in Python natlrlich auch ohne Pandas verwenden und das haben wir
ja auch in vergangenen Kapiteln schon getan. Allerdings werden wir ja nun haufiger
“echte” Daten importieren und verarbeiten, sodass wir auch haufiger mit Strings zu tun
haben werden - sei es in den Spaltennamen oder in den Zellen der Tabellen. Hier soll
also endlich eine Ubersicht tiber die wichtigsten Funktionen und Methoden gegeben
werden, die Python fur Strings bereitstellt, damit man den Umgang besser einordnen
und nutzen kann.

Es sei vorweg genommen, dass (wie immer, aber vor allem hier) nicht erwartet wird all
die folgenden Funktionen auswendig zu lernen. Vielmehr soll ein Geflihl dafiir
entstehen, was maoglich ist, sodass man es zum gegebenen Zeitpunkt “nachschlagen”
kann.

Aulerdem ist dieses Kapitel relativ umfangreich, aber auch das einzige flir Woche 7.

Generell

Vorweg sollte sich ins Gedachtnis gerufen werden, dass Strings in gewisser Weise auch
Listen sind, namlich Listen von Buchstaben. Das heil3t, dass wir mit 1en() die Lange
eines Strings bestimmen kdnnen, mit Slicing via [] auf einzelne Buchstaben zugreifen
kénnen und mit for Schleifen Uber die Buchstaben iterieren kdnnen.

x = 'Hallo'

len(x)

x[2:4]

|‘L‘L|

1/12

) BioMath

for buchstabe in x:
print(buchstabe)

o —~ ~ Q T

Als Einstieg wird dann haufig gezeigt, dass der + Operator auch fur Strings funktioniert,
und zwar um sie zu verketten, anstatt wie bei Zahlen zu addieren.

1+ 2

'Ich bin' + 'Groot'

'Ich binGroot'

Dabei ist es nicht mdglich sowohl Strings als auch Zahlen mit dem + Operator zu
verketten. Stattdessen miusste in diesem Beispiel also entweder die Zahl direkt mittels
Anfiihrungszeichen als String angegeben werden, oder aber mit der Funktion str() in
einen String umgewandelt werden.

alter='2"
'Ich bin '+alter

'Ich bin 2'

alter=2
'Ich bin '+alter

TypeError: can only concatenate str (not "int") to str

alter=2
'Ich bin '+str(alter)

2/12

< BioMath

'Ich bin 2'

Methoden

Es gibt viele Methoden, die auf Strings angewendet werden kénnen. Hier sind einige der
wichtigsten:

Einige betreffen die Grof3- und Kleinschreibung:

x = 'alle Tiere sind gleich'
x.upper()

'"ALLE TIERE SIND GLEICH'

X. lower()

'alle tiere sind gleich'
x.title()

'Alle Tiere Sind Gleich'
x.capitalize()

'Alle tiere sind gleich'
Andere erleichtern das Priifen von Strings. So gibt .islower() beispielsweise True
zuruck, wenn alle Buchstaben im String klein sind, .endswith() pruft, ob der String mit
einem bestimmten Teil endet und . find() gibt die Position des ersten Vorkommens

eines Teilstrings zurick.

y = ' aber manche sind gleicher!'
y.islower()

True

3/12

) BioMath

y.endswith('gleicher")
True

y.find('manche')

Dann gibt es beispielsweise noch . replace(), welche einen Teilstring durch einen
anderen ersetzt, .strip() entfernt Leerzeichen am Anfang und Ende eines Strings
und .split() teilt einen String anhand eines Trennzeichens in eine Liste von Strings auf.

y.replace('manche', 'einige')
' aber einige sind gleicher'

y.strip()

'aber manche sind gleicher'

y.split()

['aber', 'manche', 'sind', 'gleicher']

Method Chaining

Eine Besonderheit von Methoden in Python ist, dass sie gechained werden kdnnen, also
hintereinander geschrieben werden kénnen. Das geht auch fir Methoden, die nichts mit
Strings zu tun haben, aber hier ist nun ein guter Zeitpunkt, um das sogenannte Method
Chaining zu erklaren. Im Grunde ist nicht mehr zu sagen auller, dass man die Methoden
einfach hintereinander schreibt und das Ergebnis der ersten Methode wird dann an die
zweite Methode lUibergeben und so weiter. Anstatt also Zwischenergebnisse zu
speichern, kann die Berechnung direkt hintereinander geschrieben werden.

text = ' GeH nIcHT gelASS7EN in die gute Nacht.

Mit Zwischenergebnissen:

4/12

< BioMath

neu = text.replace('7', '")

neu = neu.strip()

neu = neu.capitalize()

neu = neu.replace('nacht', 'Nacht')
neu

'Geh nicht gelassen in die gute Nacht.'

Mit Method Chaining:

neu = text.replace('7', '').strip().capitalize().replace('nacht', 'Nacht')
neu

'Geh nicht gelassen in die gute Nacht.'

Es ist dartiber hinaus sogar mdglich die Chain in mehrere Zeilen zu schreiben, um den
Code leserlicher zu halten. Das geht entweder, indem die gesamte Chain in Klammern
geschrieben wird oder am Ende einer Zeile ein \ geschrieben wird.

neu = (

text

.replace('7', '")

.strip()

.capitalize()
.replace('nacht', 'Nacht')
)

neu

'Geh nicht gelassen in die gute Nacht.'

neu = text \
.replace('7', '') \
.strip() \
.capitalize() \
.replace('nacht', 'Nacht')

neu

'Geh nicht gelassen in die gute Nacht.'

5/12

< BioMath

.format() & f-Strings

Manchmal mdchte man in Strings auch Variablenwerte einfligen. Nehmen wir an, wir
mussten einen monatlichen Report zusammenstellen, der die Anzahl der verkauften
Einheiten und den Umsatz enthalt. Diese Werte haben wir bereits berechnet und in
Variablen gespeichert. Der Bericht soll aber auch mit einem ausformulierten Satz enden.
Die Vorlage fir diesen Satz kdnnte schlicht lauten “In diesem Monat war der Umsatz ?7?7?
und es wurden ??? Einheiten verkauft.”, sodass wir die Platzhalter durch die
Variablenwerte ersetzen mussen. Prinzipiell kennen wir jetzt schon mindestens zwei
Wege, wie wir das machen kénnten:

umsatz = 500
einheiten = 42

satz = 'In diesem Monat war der Umsatz '+str(umsatz)+'€ und es wurden
'+str(einheiten)+' Einheiten verkauft.'
satz

'In diesem Monat war der Umsatz 500€ und es wurden 42 Einheiten verkauft.'

satz = 'In diesem Monat war der Umsatz XXX€ und es wurden YYY Einheiten
verkauft.'
satz.replace('XXX', str(umsatz)).replace('YYY', str(einheiten))

'In diesem Monat war der Umsatz 500€ und es wurden 42 Einheiten verkauft.'

Es gibt aber auch eine elegantere Methode, namlich die Methode . format (). Dabei wird
der String so formatiert, dass die Platzhalter durch die Argumente der Methode ersetzt
werden. Im einfachsten Fall funktioniert das so:

satz = 'In diesem Monat war der Umsatz {}€ und es wurden {} Einheiten
verkauft.'.format(umsatz, einheiten)
satz

'In diesem Monat war der Umsatz 500€ und es wurden 42 Einheiten verkauft.'

Man kann das auch noch etwas ausfiihrlicher machen, indem man in die Platzhalter
entweder Zahlen schreibt, die angeben, welches Argument an welcher Stelle eingesetzt
werden soll oder aber Namen, die dann in der Methode angegeben werden. Sobald man
das macht, kann auch die Reinfolge der Argumente vertauscht werden, ohne dass der
String angepasst werden muss.

6/12

< BioMath

satz = 'In diesem Monat war der Umsatz {UMSATZ}€ und es wurden {EINHEITEN}
Einheiten verkauft.'

satz.format (EINHEITEN=einheiten, UMSATZ=umsatz)

'In diesem Monat war der Umsatz 500€ und es wurden 42 Einheiten verkauft.'

Schlielich kédnnen wir den Code aber auch einfacher und dennoch flexibel gestalten,
indem wir f-Strings einflhren. Diese sind seit Python 3.6 verfiigbar und bieten eine noch
kirzere und Ubersichtlichere Moglichkeit, Variablen in Strings einzufiigen. Dabei wird der
String mit einem f vorangestellt und die Variablen direkt in den String geschrieben.

satz = f'In diesem Monat war der Umsatz {umsatz}€ und es wurden {einheiten}
Einheiten verkauft.'
satz

'In diesem Monat war der Umsatz 500€ und es wurden 42 Einheiten verkauft.'
Hier nochmal eine direkte Gegenulberstellung:

zahl = 42
'Die Zahl ist {}'.format(zahl)

'Die Zahl ist 42'

zahl = 42
f'Die Zahl ist {zahl}'

'Die Zahl ist 42'

Noch mehr Mdglichkeiten hat man, wenn man die Platzhalter auch noch mit
Formatierungsanweisungen versieht. So kdnnten wir den Umsatz mit zwei
Nachkommastellen ausgeben, indem wir : .2f in die geschweiften Klammern schreiben.
(Das geht sowohl mit f-Strings, als auch mit . format().)

f'In diesem Monat war der Umsatz {umsatz:.2f}€ und es wurden {einheiten}
Einheiten verkauft.'

'In diesem Monat war der Umsatz 500.00€ und es wurden 42 Einheiten verkauft.'

7/12

) BioMath

Dabei steht das f fur float und die .2 fur die zwei Nachkommastellen. Es gibt noch viele
weitere Formatierungsanweisungen, die z.B. hier in der Python-Dokumentation
aufgelistet sind. Diese schiere Menge an Mdglichkeiten mit diesen Anweisungen

macht . format() zu einer sehr machtigen Methode, ist aber auch Uberwaltigend. Nicht
ohne Grund heif3t es in der Dokumentation ja auch “Format Specification Mini-
Language”, wird also als eigene kleine Sprache betrachtet. Hier folgen zwei Beispiele
und in den weiteren Resources gibt es noch mehr dazu.

+ fUhrt dazu, dass auch positive Zahlen mit einem Pluszeichen versehen werden. .0
und .3 sorgen wieder flr die entsprechende Anzahl Nachkommastellen und f fur float.

x, y=142.2, -3.1
f'{x:+.0f} und {y:+.3f}"'

'+42 und -3.100'

>7 fuhrt zu einem 7 Zeichen breiten String, wobei die Zeichen rechtsblindig sind und ggf.
mit Leerzeichen aufgefullt werden. .2 fuhrt zu zwei Nachkommastellen und % formatiert
den Wert als Prozentzahl.

0. 256
} 1

0 0034

p
f
p
f
p
f'{p:>7.2%}"'

{
{ 2%}
{

' 25.6
'100.0
' 0.3

c\°

A~ © ©
o

o°

Pandas

Nachdem wir die Grundlagen der String-Manipulation in Python behandelt haben, stellt
sich die Frage, wie wir diese Techniken auf Daten anwenden, die in Pandas DataFrames
gespeichert sind. Denn ahnlich wie im Abschnitt “Showcase: Einfacher & Schneller” des
Kapitels “3.7 Arrays” konnen all die String-Methoden oben nicht ohne weiteres auf ganze
Arrays/Series/DataFrame-Spalten angewedet werden. Man musste also wieder eine
Schleife schreiben um Uber alle Elemente zu iterieren. Um das zu vermeiden, bietet
Pandas eine Methode .str, die es ermdglicht, die Methoden auf ganze Spalten
anzuwenden. Als Beispiel wollen wir in der Spalte c2 des folgenden DataFrames bei
samtlichen Eintradgen die Einheit, also genauer gesagt ” in m” mit . replace() entfernen.

8/12

https://docs.python.org/3/library/string.html#formatspec

) BioMath

import pandas as pd

df = pd.DataFrame({'Cl1': [10, 12, 12], 'C2': ['HO6he in m', 'Breite in m',
'Tiefe in m']})

df

C1 C2
0 10 Héhe in m
12 Breite in m
2 12 Tiefe in m

=

Ohne .str

for 1 in range(len(df)):
df.loc[i, 'C2'] = df.loc[i, 'C2'].replace(' in m', '")

df

C1 C2
0 10 Hohe
12 Breite
2 12 Tiefe

=

Mit .str

df['C2'] = df['C2'].str.replace(' in m', '")

df

C1 Cc2
0 10 Hohe
12 Breite
2 12 Tiefe

=

Pandas bietet also eine leistungsstarke Erweiterung der Standard-String-Methoden
durch die .str Accessor-Methode. Dies ermoglicht es uns nahtlos und intuitiv String-
Methoden auf die Elemente von Pandas-Serien, also ganzen Spalten, anzuwenden.

Darlber hinaus flihrt Pandas allerdings sogar noch zusatzliche Methoden ein, die
ebenfalls haufig bendtigte Funktionen erfillen, welche aber nicht von den Standard-
String-Methoden abgedeckt waren. Diese sind in der Pandas-Dokumentation aufgelistet
und hier sind drei Beispiele:

9/12

https://pandas.pydata.org/docs/user_guide/text.html#method-summary

) BioMath

df['C2'].str.pad(
side='right"',
width=12,
fillchar="*"
)

0 Hohe in m***
1 Breite in m*
2 Tiefe in m**
Name: C2, dtype: object

df['C2'].str.contains('ei")

0
1
2 False
Name: C2, dtype: bool

df['C2'].str.cat(sep="; ')

'"Hohe in m; Breite in m; Tiefe in m'

Regex

Zu guter Letzt soll noch kurz Regex erwahnt werden. Regex steht flir Regular
Expressions und ist eine spezielle Sprache, die es ermoglicht, Muster in Strings zu
finden. Regex gibt es nicht nur in Python, sondern in vielen anderen
Programmiersprachen und auch in vielen Texteditoren. Regex ist sehr machtig und
umfangreich, aber auch kompliziert bzw. untbersichtlich. Es gibt viele verschiedene
Symbole und Anweisungen und es ist nicht einfach, sich diese zu merken. An dieser
Stelle sei lediglich zum Einen auf das Video in den weiteren Ressourcen verwiesen, das
eine sehr gute Einfihrung in Regex gibt und zum Anderen festgehalten, dass wir in
diesem Kurs Regex nicht weiter erlautern werden. Es ist aber gut zu wissen, dass es
existiert, in Python via import re genutzt werden kann und, dass es eine sehr machtige
Methode ist, um mit Strings zu arbeiten. Speziell fir Regex kdnnen LLMs wie ChatGPT
extrem hilfreich sein, weil man in naturlicher Sprache beschreiben kann welche Muster
man sucht, und dann zumindest einen guten Ansatz rausbekommt.

10

10/12

) BioMath

© Weitere Ressourcen

* ALL 47 STRING METHODS IN PYTHON EXPLAINED

Python Tutorial | F-Strings | (Deutsch, #19)

F-String Magic | Awesome | Entdecke die ganze Power der F-Strings!

5 Useful F-String Tricks In Python

Ubersicht aller String-Methods in pandas-Dokumentation

* Regex Tutorial Deutsch - Regex einfach erklart! (regex101, regex Tester, Python,
Javascript etc.)

Ubungen

Erstelle einen String mit dem Inhalt 'Python 3.8', ersetze dann “3.8” durch “3.9”, fige
am Ende des Strings ” ist toll!” hinzu, verwandle den gesamten String in
GroRRbuchstaben und zahle schliel3lich mit . count () wie oft der Buchstabe

“T” (grofdgeschrieben) im finalen String vorkommt.

'T' kommt _ mal im finalen String vor.

In der obigen Ubung kénnten alle bis auf einen Schritt ohne Weiteres auch mit Method
Chaining gelost werden. Das Hinzufiigen von ' ist toll!' mittels + gehort allerdings
nicht dazu. In folgenden zwei Beispielen wird das Problem umgangen und zwar streng
genommen nicht alles in einer durchgehenden Chain geldst, aber immerhin in einer
einzelnen Zeile Code. Schau dir beide Beispiele an und versuche jeden Aspekt und den
Unterschied im Ergbnis zu verstehen. Zerlege daflr ruhig den Code in Teilabschnitte
und probiere aus. Es sollte auch klar werden, warum in der ersten Zeile vor .upper()
und .count('T') je ein .str steht, in der zweiten aber nicht.

toll']).str.upper().str.count('T'
pd.Series(['Python 3.8'.replace
toll']).str.cat().upper().count

pd.Series(['Python 3.8'.replace('3.8', '3.9'), ' ist
)

8', '3.9'), ' ist
)

('3
(T

* (A) Geschafft

Erganze in folgendem Code die beiden fehlenden Teile 7?7, sodass der Output dem
zweiten Codeblock entspricht.

orangen = 5
namen = pd.Series(['Freja', 'Sofia', 'Magnus', 'Oliver', 'Emma'])

while orangen > 0:

11

11/12

https://youtu.be/bnSYeYFRCaA?si=AiTjguOEvKrpz5LW
https://youtu.be/sEVpAXxtzuI?si=lT_6Xk_4ZbqPnUgP
https://youtu.be/GFQKW4XP-l8?si=w3G7k9IBoHSLIbtz
https://youtu.be/EoNOWVYKyo0?si=e-JjnOKHGaJwef12
https://pandas.pydata.org/docs/user_guide/text.html#method-summary
https://youtu.be/0VZKhdD6FZk?si=CAbL1ip4hG0rZTF8
https://youtu.be/0VZKhdD6FZk?si=CAbL1ip4hG0rZTF8

< BioMath

print(f"???, sodass noch {orangen-1} lbrig sind. ???")
orangen = orangen - 1

Von den 5 Orangen hat Emma eine gegessen, sodass noch 4 ilbrig sind. Das sind
noch 80%.

Von den 4 Orangen hat Oliver eine gegessen, sodass noch 3 lbrig sind. Das sind
noch 60%.

Von den 3 Orangen hat Magnus eine gegessen, sodass noch 2 ibrig sind. Das sind
noch 40%.

Von den 2 Orangen hat Sofia eine gegessen, sodass noch 1 Ubrig sind. Das sind
noch 20%.

Von den 1 Orangen hat Freja eine gegessen, sodass noch 0 lbrig sind. Das sind
noch 0%.

* (A) Geschafft

12

12/12

	Generell
	Methoden
	Method Chaining
	.format() & f-Strings

	Pandas
	Regex
	Übungen

