
1 / 14

Spalten erzeugen & bearbeiten
by Woche 9

Wie in den vorigen Kapiteln setzen wir zunächst wieder Pandas Optionen und
importieren unseren AirBnB Datensatz.

import pandas as pd

pd.set_option('display.max_columns', 4)
pd.set_option('display.max_rows', 6)
pd.set_option('display.max_colwidth', 20)

csv_url = 'https://github.com/SchmidtPaul/ExampleData/raw/main/airbnb_open_
data/Airbnb_Open_Data.csv'
df = pd.read_csv(csv_url, dtype={25: str})

df

 id NAME ... house_rules license
0 1001254 Clean & quiet ap... ... Clean up and tre... NaN
1 1002102 Skylit Midtown C... ... Pet friendly but... NaN
2 1002403 THE VILLAGE OF H... ... I encourage you ... NaN
...
102596 6093542 Comfy, bright ro... ... NaN NaN
102597 6094094 Big Studio-One S... ... NaN NaN
102598 6094647 585 sf Luxury St... ... NaN NaN

[102599 rows x 26 columns]

In diesem Kapitel lernen wir, wie wir in einem DataFrame neue Spalten erzeugen und
vorhandene Spalten bearbeiten können. In Gewisser Hinsicht ist die Handhabung dieser
beiden Punkte sehr ähnlich, da wir beim “bearbeiten” einer Spalte im Endeffekt auch
eine neue Spalte erzeugen, die die alte Spalte ersetzt/überschreibt.

Auch hier wollen wir uns zunächst einen übersichtlichen Teildatensatz erzeugen um die
Beispiele besser nachvollziehen zu können.

rows = range(10, 16)
cols = ['NAME', 'price', 'last review']

df2 = df.loc[rows, cols]
df2

1

2 / 14

 NAME price last review
10 Cute & Cozy Lowe... $319 6/9/2019
11 Beautiful 1br on... $606 6/22/2019
12 Central Manhatta... $714 6/23/2019
13 Lovely Room 1, G... $580 6/24/2019
14 Wonderful Guest ... $149 7/5/2019
15 West Village Nes... $578 10/31/2018

Spalten erzeugen
Wir haben mehreren Möglichkeiten eine neue Spalte zu erzeugen:

• Mit eckigen Klammern und einem neuen Spaltennamen
• Mit der .assign() Methode
• Mit der .insert() Methode

Um eine neue Spalte zu erzeugen, können wir einfach einen Wert einem Spaltennamen
zuweisen, den es nicht gibt. Dieser Wert steht dann in allen Zellen der neuen Spalte:

df2['Neu'] = 'Hallo!'
df2

 NAME price last review Neu
10 Cute & Cozy Lowe... $319 6/9/2019 Hallo!
11 Beautiful 1br on... $606 6/22/2019 Hallo!
12 Central Manhatta... $714 6/23/2019 Hallo!
13 Lovely Room 1, G... $580 6/24/2019 Hallo!
14 Wonderful Guest ... $149 7/5/2019 Hallo!
15 West Village Nes... $578 10/31/2018 Hallo!

df2['Neu'] = round(number = 2/3, ndigits = 4)
df2

 NAME price last review Neu
10 Cute & Cozy Lowe... $319 6/9/2019 0.6667
11 Beautiful 1br on... $606 6/22/2019 0.6667
12 Central Manhatta... $714 6/23/2019 0.6667
13 Lovely Room 1, G... $580 6/24/2019 0.6667
14 Wonderful Guest ... $149 7/5/2019 0.6667
15 West Village Nes... $578 10/31/2018 0.6667

df2 = df2.drop(columns='Neu') # Lösche Spalte 'Neu' wieder

2

3 / 14

Deutlich relevanter ist es natürlich, wenn wir eine neue Spalte erzeugen, die von den
Werten einer oder mehrerer anderer Spalten abhängt. Eine angebrachte Anwendung
wäre z.B. eine neue Version der Spalte price zu erzeugen, die nicht ein String beginnen
mit “$” ist, sondern ein numerischer Wert. Wir erzeugen also eine neue Spalte
price_num, indem wir das Dollarzeichen von den Werten der Spalte price entfernen und
den Rest in einen numerischen Wert umwandeln. Hier sind zwei Möglichkeiten gezeigt
um dies zu erreichen: Entweder entfernen wir einfach immer das erste Zeichen, oder wir
ersetzen explizit das Dollarzeichen durch einen leeren String, sodass
danach .astype(float) angewendet werden kann:

df2['price_num'] = (
 df2['price'] # Wähle Spalte 'price'
 .str[1:] # Behalte ab zweitem Zeichen
 .astype(float) # Wandle in numerischen Wert um
)

df2

 NAME price last review price_num
10 Cute & Cozy Lowe... $319 6/9/2019 319.0
11 Beautiful 1br on... $606 6/22/2019 606.0
12 Central Manhatta... $714 6/23/2019 714.0
13 Lovely Room 1, G... $580 6/24/2019 580.0
14 Wonderful Guest ... $149 7/5/2019 149.0
15 West Village Nes... $578 10/31/2018 578.0

df2['price_num'] = (
 df2['price'] # Wähle Spalte 'price'
 .str.replace('$', '') # Ersetze '$' durch ''
 .astype(float) # Wandle in numerischen Wert um
)

df2

 NAME price last review price_num
10 Cute & Cozy Lowe... $319 6/9/2019 319.0
11 Beautiful 1br on... $606 6/22/2019 606.0
12 Central Manhatta... $714 6/23/2019 714.0
13 Lovely Room 1, G... $580 6/24/2019 580.0
14 Wonderful Guest ... $149 7/5/2019 149.0
15 West Village Nes... $578 10/31/2018 578.0

Erst jetzt könnten wir sinnvolle Analysen über die Preise durchführen, z.B. den
Durchschnitt berechnen oder eine Abbildung erstellen.

3

4 / 14

df2['price_num'].mean()

np.float64(491.0)

df2['price'].mean()

TypeError: Could not convert string '$319 $606 $714 $580 $149 $578 ' to
numeric

 Zusätzlicher Hinweis

Die Art und Weise wie wir die Spalte price hier konvertieren funktioniert. Nachdem
wir das Dollarzeichen entfernt haben, bleiben nur noch Zahlen im String übrig,
sodass eine Konvertierung in einen numerischen Wert möglich ist. Derselbe Befehl
würde allerdings für den gesamten Datensatz df nicht ausreichen/funktionieren. Das
liegt daran, dass dort Preise höher als $1000 vorkommen, bei denen dann im String
ein Komma als Tausendertrennzeichen verwendet wird - also z.B. 1,000. In diesem
Fall müssten wir das Komma ebenfalls entfernen, bevor wir den String in einen
numerischen Wert umwandeln können. Dort bräuchten wir dann also eine
zusätzliche .str.replace(',', '') Methode.

Die .assign() Methode
Die .assign() Methode ist eine weitere Möglichkeit, eine neue Spalte zu erzeugen.
Hierbei wird ein neues DataFrame zurückgegeben, das die alte Spalte und die neue
Spalte enthält. Das ursprüngliche DataFrame bleibt unverändert. Im Gegensatz zu den
eckigen Klammern können wir hier auch mehrere Spalten auf einmal erzeugen.

temps = pd.DataFrame({'temp_C': [10.0, 25.0]})

temps.assign(
 temp_F = temps['temp_C'] * 9 / 5 + 32,
 temp_K = temps['temp_C'] + 273.15
)

 temp_C temp_F temp_K
0 10.0 50.0 283.15
1 25.0 77.0 298.15

4

5 / 14

Die insert() Methode
Die insert() Methode ist noch eine Möglichkeit, eine neue Spalte zu erzeugen. Hierbei
wird die neue Spalte an einer bestimmten Position eingefügt. Im Gegensatz
zur .assign() Methode wird das ursprüngliche DataFrame verändert.

temps = pd.DataFrame({'temp_C': [10.0, 25.0]})

temps.insert(loc = 0, column = 'temp_F', value = temps['temp_C'] * 9 / 5 + 32)
temps

 temp_F temp_C
0 50.0 10.0
1 77.0 25.0

Spalten bearbeiten
Tatsächlich ist das Bearbeiten einer Spalte nicht viel anders als das Erzeugen einer
neuen Spalte. Wir können einfach den Wert einer Spalte überschreiben, indem wir einen
neuen Wert zuweisen. Wir wollen also die die Spalte price_num löschen und stattdessen
price direkt in numerische Werte umwandeln:

df2 = df2.drop(columns='price_num')

df2['price'] = (
 df2['price'] # Wähle Spalte 'price'
 .str[1:] # Behalte ab zweitem Zeichen
 .astype(float) # Wandle in numerischen Wert um
)

df2

 NAME price last review
10 Cute & Cozy Lowe... 319.0 6/9/2019
11 Beautiful 1br on... 606.0 6/22/2019
12 Central Manhatta... 714.0 6/23/2019
13 Lovely Room 1, G... 580.0 6/24/2019
14 Wonderful Guest ... 149.0 7/5/2019
15 West Village Nes... 578.0 10/31/2018

Die .case_when() Methode
Manchmal ist es nützlich, eine neue Spalte zu erzeugen, die von den Werten einer
anderen Spalte abhängt, aber nicht einfach durch eine einfache Transformation erreicht

5

6 / 14

werden kann. In diesem Fall können wir die (noch relativ neue) .case_when() Methode
verwenden. Wie der Name schon andeutet, können wir hier eine Fallunterscheidung
definieren, die für jeden Wert der ursprünglichen Spalte eine andere Transformation
durchführt. Im einfachsten Fall können wir eine Liste von Bedingungen und
auszugebenen Werten angeben, also hier beispielsweise Preiskategorien:

caselist=[
 (df2['price'] < 200, 'günstig'),
 (df2['price'] < 580, 'mittel'),
 (df2['price'] >= 580, 'teuer')
]

df2['price_cat'] = df2['price'].case_when(caselist)

df2

 NAME price last review price_cat
10 Cute & Cozy Lowe... 319.0 6/9/2019 mittel
11 Beautiful 1br on... 606.0 6/22/2019 teuer
12 Central Manhatta... 714.0 6/23/2019 teuer
13 Lovely Room 1, G... 580.0 6/24/2019 teuer
14 Wonderful Guest ... 149.0 7/5/2019 günstig
15 West Village Nes... 578.0 10/31/2018 mittel

Es sei darauf hingewiesen, dass die Bedingungen nacheinander überprüft werden. Das
heißt, dass nur die erste Bedingung, die erfüllt ist, angewendet wird. Das wird deutlich,
wenn wir die Reihenfolge der Bedingungen von eben ändern, da so nichts mehr als
“günstig” eingestuft werden kann:

caselist=[
 (df2['price'] < 580, 'mittel'),
 (df2['price'] < 200, 'günstig'),
 (df2['price'] >= 580, 'teuer')
]

df2['price_cat'] = df2['price'].case_when(caselist)

df2

 NAME price last review price_cat
10 Cute & Cozy Lowe... 319.0 6/9/2019 mittel
11 Beautiful 1br on... 606.0 6/22/2019 teuer
12 Central Manhatta... 714.0 6/23/2019 teuer
13 Lovely Room 1, G... 580.0 6/24/2019 teuer

6

7 / 14

14 Wonderful Guest ... 149.0 7/5/2019 mittel
15 West Village Nes... 578.0 10/31/2018 mittel

Außerdem gilt, dass wenn keine Bedingung erfüllt ist, der Wert nicht verändert wird. Dies
kann zu unbemerkten Problemen führen, da man manchmal davon ausgeht, dass alle
Werte transformiert wurden, obwohl dies nicht der Fall ist. Hier ein Beispiel, in welchem
wir versehentlich den Fall übersehen, dass ein Preis genau $580 ist und so auf unserer
Grenze liegt, für die hier keine der Bedingungen zutrifft.

Für solche Fälle können wir quasi als Fallnetz eine Default-Bedingung angeben, die für
alle Werte gilt, die nicht durch die vorherigen Bedingungen abgedeckt sind - z.B. indem
wir eine Bedingung angeben, die möglichst immer zutrifft wie
df2['price']==df2['price']. Anschließend könnte man dann nämlich nach dem
entsprechenden Fallnetz-Wert (siehe unten '--------') filtern um zu prüfen, ob alles
erwartungsgemäß geklappt hat.

caselist=[
 (df2['price'] < 200, 'günstig'),
 (df2['price'] < 580, 'mittel'),
 (df2['price'] > 580, 'teuer')
]

df2['price_cat'] = df2['price'].case_when(caselist)

df2

 NAME price last review price_cat
10 Cute & Cozy Lowe... 319.0 6/9/2019 mittel
11 Beautiful 1br on... 606.0 6/22/2019 teuer
12 Central Manhatta... 714.0 6/23/2019 teuer
13 Lovely Room 1, G... 580.0 6/24/2019 580.0
14 Wonderful Guest ... 149.0 7/5/2019 günstig
15 West Village Nes... 578.0 10/31/2018 mittel

caselist=[
 (df2['price'] < 200, 'günstig'),
 (df2['price'] < 580, 'mittel'),
 (df2['price'] > 580, 'teuer'),
 (df2['price']==df2['price'], '--------')
]

df2['price_cat'] = df2['price'].case_when(caselist)

7

8 / 14

df2

 NAME price last review price_cat
10 Cute & Cozy Lowe... 319.0 6/9/2019 mittel
11 Beautiful 1br on... 606.0 6/22/2019 teuer
12 Central Manhatta... 714.0 6/23/2019 teuer
13 Lovely Room 1, G... 580.0 6/24/2019 --------
14 Wonderful Guest ... 149.0 7/5/2019 günstig
15 West Village Nes... 578.0 10/31/2018 mittel

df2 = df2.drop(columns='price_cat')

Weitere Datentypen
In den vorigen Kapiteln haben wir bereits gesehen, dass es in Pandas verschiedene
Datentypen gibt, die wir für unsere Spalten verwenden können. Die wichtigsten sind:

• int für Ganzzahlen
• float für Fließkommazahlen
• str für Zeichenketten
• bool für Wahrheitswerte
• category für kategorische Variablen
• datetime für Zeitstempel
• object für beliebige Python Objekte

Die meisten dieser Datentypen sind uns schon bekannt, doch wir wollen hier noch auf
datetime und category eingehen.

datetime
Der datetime Datentyp repräsentiert Zeitstempel, also einen bestimmten Zeitpunkt.
Dieser Datentyp ist sehr mächtig, da wir damit nicht nur einen Zeitpunkt, sondern auch
Zeitdifferenzen und Zeitintervalle darstellen können. Aktuell ist die Spalte last review in
unserem df2 noch ein String. Wir können das Datum also lesen, doch wie auch mit dem
price Spalte vor der Umwandlung in eine numerische Spalte könnten wir so keine
sinnvollen Analysen durchführen. Das wird spätestens dann klar, wenn man nach der
Spalte sortieren will und merkt, dass die Sortierung nicht chronologisch, sondern
alphabetisch ist.

df2.sort_values('last review')

8

9 / 14

 NAME price last review
15 West Village Nes... 578.0 10/31/2018
11 Beautiful 1br on... 606.0 6/22/2019
12 Central Manhatta... 714.0 6/23/2019
13 Lovely Room 1, G... 580.0 6/24/2019
10 Cute & Cozy Lowe... 319.0 6/9/2019
14 Wonderful Guest ... 149.0 7/5/2019

Dies wiederum führt z.B. dann zu Problemen, wenn man die Werte chronologisch auf
einer Achse eine Abbildung darstellen will.

Um die Spalte in einen datetime Datentyp umzuwandeln, können wir die
pd.to_datetime() Funktion verwenden. Diese Funktion ist sehr mächtig und kann viele
verschiedene Datums-Formate erkennen. Da die Daten hier in einem Standardformat
vorliegen, reicht es einfach die Spalte zu übergeben.

df2['last_review_date'] = pd.to_datetime(df2['last review'])
df2.sort_values('last_review_date')

 NAME price last review last_review_date
15 West Village Nes... 578.0 10/31/2018 2018-10-31
10 Cute & Cozy Lowe... 319.0 6/9/2019 2019-06-09
11 Beautiful 1br on... 606.0 6/22/2019 2019-06-22
12 Central Manhatta... 714.0 6/23/2019 2019-06-23
13 Lovely Room 1, G... 580.0 6/24/2019 2019-06-24
14 Wonderful Guest ... 149.0 7/5/2019 2019-07-05

Nun funktioniert auch direkt die Sortierung. Es fällt auf, dass das Datum nun als Jahr-
Monat-Tag angegeben ist, wo es doch vorher im String als Monat/Tag/Jahr geschrieben
war. Das liegt daran, dass Pandas das ISO Format bevorzugt, welches international
einheitlich ist und so keine Verwechslungen zulässt¹. Beeindruckenderweise hat
pd.to_datetime() das vorliegende Format automatisch erkannt und umgewandelt. In der
Praxis wird dies allerdings nicht immer so reibungslos funktionieren, da es viele
verschiedene Datumsformate gibt. In solchen Fällen können wir das Format auch
explizit angeben:

df2['last_review_date'] = pd.to_datetime(
 df2['last review'],
 format='%m/%d/%Y'
)

¹Ein weiterer Vorteil des ISO-Formats ist, dass es sich auch als String alphabetisch sinnvoll sortieren
lässt, da die Zahlen in der Reihenfolge der Größe angeordnet sind.

9

https://de.wikipedia.org/wiki/ISO_8601

10 / 14

df2.sort_values('last review')

 NAME price last review last_review_date
15 West Village Nes... 578.0 10/31/2018 2018-10-31
11 Beautiful 1br on... 606.0 6/22/2019 2019-06-22
12 Central Manhatta... 714.0 6/23/2019 2019-06-23
13 Lovely Room 1, G... 580.0 6/24/2019 2019-06-24
10 Cute & Cozy Lowe... 319.0 6/9/2019 2019-06-09
14 Wonderful Guest ... 149.0 7/5/2019 2019-07-05

Im Argument format können wir verschiedene Codes verwenden, um das Format zu
spezifizieren. Der String enthält also die zwei / Zeichen, die wir in den Daten haben, und
die Codes %m, %d und %Y, die für Monat, Tag und Jahr stehen. Die Codes sind in der
Dokumentation aufgelistet. So steht %Y z.B. für ein vierstelliges Jahr, %y für ein
zweistelliges Jahr, %m für einen zweistelligen Monat, %M aber wiederum für Minuten. Auch
dies ist wie schon Regex zum Arbeiten mit Strings ein Beispiel für eine Art separater
Sprache, die man nicht unbedingt lernen, aber zumindest nachschlagen muss, um
effektiv mit Pandas arbeiten zu können.

category
Der category Datentyp ist ein spezieller Datentyp, der für kategorische Variablen
verwendet wird. Kategorische Variablen sind Variablen, die nur eine begrenzte Anzahl
von diskreten Werten annehmen können. Ein Beispiel wäre z.B. die Spalte room_type in
unserem AirBnB Datensatz. Diese Spalte hat nur vier verschiedene Werte: Entire home/
apt, Hotel room, Private room und Shared room.

room_types = df['room type'].unique()
room_types

array(['Private room', 'Entire home/apt', 'Shared room', 'Hotel room'],
 dtype=object)

Um die Spalte in einen kategorischen Datentyp umzuwandeln, können wir die astype()
Methode verwenden. Der Vorteil von kategorischen Variablen ist, dass sie weniger
Speicherplatz benötigen und schneller zu verarbeiten sind. Das liegt daran, dass
Pandas die Werte als Zahlen speichert und eine separate Tabelle mit den zugehörigen
Werten führt. So wird z.B. Entire home/apt als 0, Hotel room als 1, Private room als 2
und Shared room als 3 gespeichert. Das bedeutet demnach auch, dass diese diskreten
Stufen/Level nun immer in der entsprechenden Reihenfolge sortiert werden, was z.B. bei
einer Abbildung von Vorteil sein kann.

10

https://docs.python.org/3/library/datetime.html#strftime-and-strptime-format-codes

11 / 14

#
df['room type']

0 Private room
1 Entire home/apt
2 Private room
 ...
102596 Private room
102597 Entire home/apt
102598 Entire home/apt
Name: room type, Length: 102599, dtype: object

df['room type'] = df['room type'].astype('category')
df['room type']

0 Private room
1 Entire home/apt
2 Private room
 ...
102596 Private room
102597 Entire home/apt
102598 Entire home/apt
Name: room type, Length: 102599, dtype: category
Categories (4, object): ['Entire home/apt', 'Hotel room', 'Private room',
'Shared room']

Wie man sieht hat sich der Inhalt der Spalte nicht wirklich verändert, doch der Datentyp
ist nun category. Außerdem wird deshalb auch Categories (4, object): ['Entire home/
apt', 'Hotel room', 'Private room', 'Shared room'] angezeigt, was bedeutet, dass es
vier Kategorien gibt und diese in der genannten Reihenfolge sortiert sind. Wie man sieht,
werden die Stufen standardmäßig alphabetisch sortiert. Wollen wir eine andere
Reihenfolge, können wir dies wie folgt mit .cat.set_categories() tun. Außerdem gibt es
die Möglichkeit, die Kategorien mit ordered=True als geordnet zu definieren, was
bedeutet, dass die Reihenfolge der Kategorien eine signifikante Rolle spielt:

meine_stufen = ['Shared room', 'Private room', 'Hotel room', 'Entire home/
apt']

df['room type'] = df['room type'].cat.set_categories(
 meine_stufen,
 ordered=False
)

11

12 / 14

df['room type']

0 Private room
1 Entire home/apt
2 Private room
 ...
102596 Private room
102597 Entire home/apt
102598 Entire home/apt
Name: room type, Length: 102599, dtype: category
Categories (4, object): ['Shared room', 'Private room', 'Hotel room', 'Entire
home/apt']

df['room type'] = df['room type'].cat.set_categories(
 meine_stufen,
 ordered=True
)

df['room type']

0 Private room
1 Entire home/apt
2 Private room
 ...
102596 Private room
102597 Entire home/apt
102598 Entire home/apt
Name: room type, Length: 102599, dtype: category
Categories (4, object): ['Shared room' < 'Private room' < 'Hotel room' <
'Entire home/apt']

Wenn man ordered=True setzt, erklärt man, dass die Reihenfolge der Kategorien eine
signifikante Rolle spielt. Man erkennt das im Output daran, dass zwischen den Stufen
ein < anstelle eines , steht. Es bedeutet, dass die Kategorien nicht nur eine Reihe von
verschiedenen Werten darstellen, sondern dass zwischen den Werten eine spezifische,
sinnvolle Ordnung existiert. Diese wäre hier z.B. der Fall, aber auch bei anderen
Variablen wie z.B. Schulnoten oder Kleidergrößen. Nicht der Fall wäre es z.B. bei
Farben (wenn man nicht gerade auf Wellenlängen oder Helligkeit abzielt),
Geschlechtern oder bei den Namen von Ländern.

So oder so werden die Kategorien nun in der Reihenfolge angezeigt, die wir angegeben
haben, wenn wir jedoch zusätzlich ordered=True setzen, können wir auch mit den

12

13 / 14

Kategorien rechnen. So können wir z.B. Operationen wie < oder > auf den kategorischen
Spalten durchführen, was bei nicht-geordneten Kategorien nicht möglich ist.

Man kann übrigens auch direkt beim Umwandeln in den kategorischen Datentyp die
Reihenfolge angeben, indem man die Kategorien als Liste übergibt und
pd.Categorical() nutzt:

farben = ['Rot', 'Gelb', 'Blau']
farb_df = pd.DataFrame({'Farbe': farben})

Umwandlung in eine kategorische Variable ohne Ordnung
farb_df['Farbe_unordered'] = pd.Categorical(
 farb_df['Farbe'],
 categories=farben,
 ordered=False
)

Umwandlung in eine kategorische Variable mit Ordnung
farb_df['Farbe_ordered'] = pd.Categorical(
 farb_df['Farbe'],
 categories=farben,
 ordered=True
)

farb_df

 Farbe Farbe_unordered Farbe_ordered
0 Rot Rot Rot
1 Gelb Gelb Gelb
2 Blau Blau Blau

farb_df[farb_df['Farbe_ordered'] > 'Rot']

 Farbe Farbe_unordered Farbe_ordered
1 Gelb Gelb Gelb
2 Blau Blau Blau

farb_df[farb_df['Farbe_unordered'] > 'Rot']

TypeError: Unordered Categoricals can only compare equality or not

Im Endeffekt sollten wir also immer dann, wenn wir wissen, dass eine Spalte nur eine
begrenzte Anzahl von diskreten Werten annehmen kann, diese in einen kategorischen

13

14 / 14

Datentyp umwandeln. Dies ist nicht nur effizienter, sondern auch sicherer, da wir so
sicherstellen, dass keine falschen Werte eingegeben werden können.

 Weitere Ressourcen

• Pandas Tutorial #17 - DateTime (Python für Data Science)
• Pandas Tutorial #18 - Datum und Uhrzeit als Index (Python für Data Science)
• Pandas Tutorial #11 - Mehr zu Kategorien (Python für Data Science)
• Die Beispiele in der pandas.Series.cat Dokumentation

Übungen
Füge dem AirBnB Datensatz eine neue Spalte servicegebuehr_eur hinzu, die die
Servicegebühr der Unterkunft (=Spalte service fee) als numerischen Wert und in Euro
angibt. Nimm dazu an, dass 1,00 Euro genau 1,07 Dollar entspricht. Filtere daraufhin
nur die Unterkünfte mit einer Servicegebühr von höchstens 15 Euro heraus.

• Von den insgesamt 102599 Unterkünften haben ____ eine Servicegebühr von
maximal 15 Euro.

Erzeuge eine neue Spalten preiskategorie, die die Servicegebühren der Unterkünfte in
die Kategorien “günstig”, “mittel” und “teuer” einteilt. Die Kategorien sollen dabei
folgendermaßen definiert sein:

• “günstig” für Servicegebühren unter 20 Euro
• “mittel” für Servicegebühren ab 20 und bis 50 Euro
• “teuer” für Servicegebühren über 50 Euro

Die erzeugte Spalte soll am Ende als kategorischer Datentyp vorliegen und die Stufen
dabei in der Reihenfolge “günstig”, “mittel”, “teuer” sortiert sein.

• (A) Geschafft

Für ein Szenario wie das obige, in dem wir Kategorien basierend auf Schwellenwerten
definieren, gibt es auch eine spezielle Methode in Pandas, die .cut() Methode. Diese
Methode ist sehr mächtig und kann sogar auch mit Zeitstempeln umgehen. Mache dich
selbst mit dieser Methode vertraut und versuche die obige Übung damit - anstelle mit
case_when() - zu lösen. Ein guter Startpunkt sind die Beispiele in der Dokumentation hier
und hier oder auch dieses Youtube Video.

• (A) Geschafft

14

https://youtu.be/rfmiu5NKFjI?si=uH6GXluE12ccQXfV
https://youtu.be/fyi83xMSLjw?si=mMib84Ns9OCPLjCp
https://youtu.be/HaLpJgaGBTE?si=MXVw3rKk10qjQ3gT
https://pandas.pydata.org/docs/reference/api/pandas.Series.cat.html
https://pandas.pydata.org/docs/reference/api/pandas.Series.cat.html
https://pandas.pydata.org/docs/reference/api/pandas.Series.cat.html
https://pandas.pydata.org/docs/dev/user_guide/reshaping.html#reshaping-tile-cut
https://pandas.pydata.org/docs/reference/api/pandas.cut.html
https://youtu.be/MJt6NotH4fY?si=WcWeHdCsB_ji7wM1

	Spalten erzeugen
	Die .assign() Methode
	Die insert() Methode

	Spalten bearbeiten
	Die .case_when() Methode
	Weitere Datentypen
	datetime
	category

	Übungen

