< BioMath

Spalten erzeugen & bearbeiten
by Woche 9

Wie in den vorigen Kapiteln setzen wir zunachst wieder Pandas Optionen und
importieren unseren AirBnB Datensatz.

import pandas as pd

pd.set option('display.max_columns', 4)
pd.set option('display.max_rows', 6)
pd.set option('display.max colwidth', 20)

csv_url = 'https://github.com/SchmidtPaul/ExampleData/raw/main/airbnb open
data/Airbnb Open Data.csv'
df = pd.read csv(csv_url, dtype={25: str})

df

id NAME ... house rules license
0 1001254 Clean & quiet ap... ... Clean up and tre... NaN
1 1002102 Skylit Midtown C... ... Pet friendly but... NaN
2 1002403 THE VILLAGE OF H... ... I encourage you ... NaN
102596 6093542 Comfy, bright ro... ... NaN NaN
102597 6094094 Big Studio-One S... ... NaN NaN
102598 6094647 585 sf Luxury St... ... NaN NaN

[102599 rows x 26 columns]

In diesem Kapitel lernen wir, wie wir in einem DataFrame neue Spalten erzeugen und
vorhandene Spalten bearbeiten kénnen. In Gewisser Hinsicht ist die Handhabung dieser
beiden Punkte sehr ahnlich, da wir beim “bearbeiten” einer Spalte im Endeffekt auch
eine neue Spalte erzeugen, die die alte Spalte ersetzt/liberschreibt.

Auch hier wollen wir uns zunachst einen Ubersichtlichen Teildatensatz erzeugen um die
Beispiele besser nachvollziehen zu kénnen.

range (10, 16)
['NAME', 'price', 'last review']

rows
cols

df2 = df.loc[rows, cols]
df2

1/14

10
11
12
13
14
15

Spalten erzeugen

Wir haben mehreren Moglichkeiten eine neue Spalte zu erzeugen:

» Mit eckigen Klammern und einem neuen Spaltennamen
e Mitder .assign() Methode
* Mitder .insert() Methode

Um eine neue Spalte zu erzeugen, kdnnen wir einfach einen Wert einem Spaltennamen

zuweisen, den es nicht gibt. Dieser Wert steht dann in allen Zellen der neuen Spalte:

df2['Neu'] =
df2

10
11
12
13
14
15

df2['Neu'] = round(number
df2

10
11
12
13
14
15

NAME price last review

Cute & Cozy Lowe...
Beautiful 1br on...
Central Manhatta...
Lovely Room 1, G...
Wonderful Guest ...
West Village Nes...

'Hallo!'

$319
$606
$714
$580
$149
$578

6/9/2019
6/22/2019
6/23/2019
6/24/2019

7/5/2019

10/31/2018

NAME price last review

Cute & Cozy Lowe...
Beautiful 1br on...
Central Manhatta...
Lovely Room 1, G...
Wonderful Guest ...
West Village Nes...

$319
$606
$714
$580
$149
$578

6/9/2019
6/22/2019
6/23/2019
6/24/2019

7/5/2019

10/31/2018

= 2/3, ndigits =

NAME price last review

Cute & Cozy Lowe...
Beautiful 1br on...
Central Manhatta...
Lovely Room 1, G...
Wonderful Guest ...
West Village Nes...

$319
$606
$714
$580
$149
$578

df2 = df2.drop(columns="'Neu")

6/9/2019
6/22/2019
6/23/2019
6/24/2019

7/5/2019

10/31/2018

Neu
Hallo!
Hallo!
Hallo!
Hallo!
Hallo!
Hallo!

Neu
.6667
.6667
.6667
.6667
.6667
.6667

[clolNoNoNoNO)

) BioMath

2/14

) BioMath

Deutlich relevanter ist es natirlich, wenn wir eine neue Spalte erzeugen, die von den
Werten einer oder mehrerer anderer Spalten abhangt. Eine angebrachte Anwendung
ware z.B. eine neue Version der Spalte price zu erzeugen, die nicht ein String beginnen
mit “$” ist, sondern ein numerischer Wert. Wir erzeugen also eine neue Spalte

price num, indem wir das Dollarzeichen von den Werten der Spalte price entfernen und
den Rest in einen numerischen Wert umwandeln. Hier sind zwei Moglichkeiten gezeigt
um dies zu erreichen: Entweder entfernen wir einfach immer das erste Zeichen, oder wir
ersetzen explizit das Dollarzeichen durch einen leeren String, sodass

danach .astype(float) angewendet werden kann:

df2['price num'] = (
df2['price']

str[l:]

.astype(float)
)
df2

NAME price last review price num

10 Cute & Cozy Lowe... $319 6/9/2019 319.0
11 Beautiful 1lbr on... $606 6/22/2019 606.0
12 Central Manhatta... $714 6/23/2019 714.0
13 Lovely Room 1, G... $580 6/24/2019 580.0
14 Wonderful Guest ... $149 7/5/2019 149.0
15 West Village Nes... $578 10/31/2018 578.0

df2['price num'] = (
df2['price']
.str.replace('$', '')
.astype(float)

)

df2

NAME price last review price num

10 Cute & Cozy Lowe... $319 6/9/2019 319.0
11 Beautiful 1br on... $606 6/22/2019 606.0
12 Central Manhatta... $714 6/23/2019 714.0
13 Lovely Room 1, G... $580 6/24/2019 580.0
14 Wonderful Guest ... $149 7/5/2019 149.0
15 West Village Nes... $578 10/31/2018 578.0

Erst jetzt kbnnten wir sinnvolle Analysen Uber die Preise durchfihren, z.B. den
Durchschnitt berechnen oder eine Abbildung erstellen.

3/14

df2['price num'].mean()

np.float64(491.0)

df2['price'].mean()

TypeError: Could not convert string '$319 $606 $714 $580 $149 $578 ' to
numeric

1 Zusatzlicher Hinweis

Die Art und Weise wie wir die Spalte price hier konvertieren funktioniert. Nachdem
wir das Dollarzeichen entfernt haben, bleiben nur noch Zahlen im String Gbrig,
sodass eine Konvertierung in einen numerischen Wert maoglich ist. Derselbe Befehl
wiurde allerdings fir den gesamten Datensatz df nicht ausreichen/funktionieren. Das
liegt daran, dass dort Preise hoher als $1000 vorkommen, bei denen dann im String
ein Komma als Tausendertrennzeichen verwendet wird - also z.B. 1,000. In diesem
Fall missten wir das Komma ebenfalls entfernen, bevor wir den String in einen
numerischen Wert umwandeln kénnen. Dort brauchten wir dann also eine
zusatzliche .str.replace(',', '') Methode.

Die .assign() Methode

Die .assign() Methode ist eine weitere Moglichkeit, eine neue Spalte zu erzeugen.
Hierbei wird ein neues DataFrame zurlickgegeben, das die alte Spalte und die neue
Spalte enthalt. Das urspringliche DataFrame bleibt unverandert. Im Gegensatz zu den
eckigen Klammern kdnnen wir hier auch mehrere Spalten auf einmal erzeugen.

temps = pd.DataFrame({'temp C': [10.0, 25.0]})

temps.assign(
temp F = temps['temp C'] * 9 / 5 + 32,
temp K = temps['temp C'] + 273.15
)

temp C temp F temp K
0 10.0 50.0 283.15
1 25.0 77.0 298.15

) BioMath

4/14

Die insert() Methode

Die insert () Methode ist noch eine Mdéglichkeit, eine neue Spalte zu erzeugen. Hierbei
wird die neue Spalte an einer bestimmten Position eingefiigt. Im Gegensatz
zur .assign() Methode wird das urspringliche DataFrame verandert.

temps = pd.DataFrame({'temp C': [10.0, 25.0]})

temps.insert(loc = 0, column = 'temp F', value = temps['temp C'] * 9 / 5 + 32)
temps

temp_ F temp C
0 50.0 10.0
1 77.0 25.0

Spalten bearbeiten

Tatsachlich ist das Bearbeiten einer Spalte nicht viel anders als das Erzeugen einer
neuen Spalte. Wir kdnnen einfach den Wert einer Spalte Gberschreiben, indem wir einen
neuen Wert zuweisen. Wir wollen also die die Spalte price num I6schen und stattdessen
price direkt in numerische Werte umwandeln:

df2 = df2.drop(columns="'price num')

df2['price'] = (
df2['price'] # Wahle Spalte 'price'
str[l:] # Behalte ab zweitem Zeichen
.astype(float) # Wandle in numerischen Wert um

)

df2

NAME price last review
10 Cute & Cozy Lowe... 319.0 6/9/2019
11 Beautiful 1lbr on... 606.0 6/22/2019
12 Central Manhatta... 714.0 6/23/2019
13 Lovely Room 1, G... 580.0 6/24/2019
14 Wonderful Guest ... 149.0 7/5/2019
15 West Village Nes... 578.0 10/31/2018

Die .case when() Methode

Manchmal ist es nitzlich, eine neue Spalte zu erzeugen, die von den Werten einer
anderen Spalte abhangt, aber nicht einfach durch eine einfache Transformation erreicht

< BioMath

5/14

werden kann. In diesem Fall kbnnen wir die (noch relativ neue) .case when() Methode
verwenden. Wie der Name schon andeutet, kdnnen wir hier eine Fallunterscheidung
definieren, die fur jeden Wert der urspriinglichen Spalte eine andere Transformation
durchfihrt. Im einfachsten Fall kdnnen wir eine Liste von Bedingungen und
auszugebenen Werten angeben, also hier beispielsweise Preiskategorien:

caselist=[
(df2['price'] < 200, 'glinstig'),
(df2['price'] < 580, 'mittel'),
(df2['price'] >= 580, 'teuer')

1

df2['price cat'] = df2['price'].case when(caselist)

df2

NAME price last review price cat
10 Cute & Cozy Lowe... 319.0 6/9/2019 mittel
11 Beautiful 1lbr on... 606.0 6/22/2019 teuer
12 Central Manhatta... 714.0 6/23/2019 teuer
13 Lovely Room 1, G... 580.0 6/24/2019 teuer
14 Wonderful Guest ... 149.0 7/5/2019 glnstig
15 West Village Nes... 578.0 10/31/2018 mittel

Es sei darauf hingewiesen, dass die Bedingungen nacheinander Uberprift werden. Das
heil}t, dass nur die erste Bedingung, die erflllt ist, angewendet wird. Das wird deutlich,
wenn wir die Reihenfolge der Bedingungen von eben éndern, da so nichts mehr als
“glnstig” eingestuft werden kann:

caselist=[
(df2['price'] < 580, 'mittel'),
(df2['price'] < 200, 'glnstig'),
(df2['price'] >= 580, 'teuer')

1

df2['price cat'] = df2['price'].case when(caselist)

df2

NAME price last review price cat
10 Cute & Cozy Lowe... 319.0 6/9/2019 mittel
11 Beautiful 1lbr on... 606.0 6/22/2019 teuer
12 Central Manhatta... 714.0 6/23/2019 teuer
13 Lovely Room 1, G... 580.0 6/24/2019 teuer

) BioMath

6/14

) BioMath

14 Wonderful Guest ... 149.0 7/5/2019 mittel
15 West Village Nes... 578.0 10/31/2018 mittel

AulRerdem gilt, dass wenn keine Bedingung erfullt ist, der Wert nicht verandert wird. Dies
kann zu unbemerkten Problemen fiihren, da man manchmal davon ausgeht, dass alle
Werte transformiert wurden, obwohl dies nicht der Fall ist. Hier ein Beispiel, in welchem
wir versehentlich den Fall (ibersehen, dass ein Preis genau $580 ist und so auf unserer
Grenze liegt, fur die hier keine der Bedingungen zutrifft.

Far solche Falle kbnnen wir quasi als Fallnetz eine Default-Bedingung angeben, die fur
alle Werte gilt, die nicht durch die vorherigen Bedingungen abgedeckt sind - z.B. indem
wir eine Bedingung angeben, die méglichst immer zutrifft wie
df2['price']==df2['price']. Anschliefend konnte man dann namlich nach dem
entsprechenden Fallnetz-Wert (siehe unten ' -------- ') filtern um zu prifen, ob alles
erwartungsgeman geklappt hat.

caselist=[
(df2['price'] < 200, 'glnstig'),
(df2['price'] < 580, 'mittel'),
(df2['price'] > 580, 'teuer')

1

df2['price cat'] = df2['price'].case when(caselist)

df2

NAME price last review price cat
10 Cute & Cozy Lowe... 319.0 6/9/2019 mittel
11 Beautiful 1lbr on... 606.0 6/22/2019 teuer
12 Central Manhatta... 714.0 6/23/2019 teuer
13 Lovely Room 1, G... 580.0 6/24/2019 580.0
14 Wonderful Guest ... 149.0 7/5/2019 glnstig
15 West Village Nes... 578.0 10/31/2018 mittel
caselist=[

(df2['price'] < 200, 'glnstig'),

(df2['price'] < 580, 'mittel'),

(df2['price'] > 580, 'teuer'),

(df2['price']==df2['price'], '-------- ")
1

df2['price cat'] = df2['price'].case when(caselist)

7/14

df2

NAME price last review price cat
10 Cute & Cozy Lowe... 319.0 6/9/2019 mittel
11 Beautiful 1lbr on... 606.0 6/22/2019 teuer
12 Central Manhatta... 714.0 6/23/2019 teuer
13 Lovely Room 1, G... 580.0 6/24/2019 --------
14 Wonderful Guest ... 149.0 7/5/2019 glinstig
15 West Village Nes... 578.0 10/31/2018 mittel

df2 = df2.drop(columns="'price cat')

Weitere Datentypen

In den vorigen Kapiteln haben wir bereits gesehen, dass es in Pandas verschiedene
Datentypen gibt, die wir fir unsere Spalten verwenden kdnnen. Die wichtigsten sind:

 int fUr Ganzzahlen

* float fUr FlieRkommazahlen

» str flr Zeichenketten

* bool fir Wahrheitswerte

* category fir kategorische Variablen
* datetime fur Zeitstempel

* object fUr beliebige Python Objekte

Die meisten dieser Datentypen sind uns schon bekannt, doch wir wollen hier noch auf
datetime und category eingehen.

datetime

Der datetime Datentyp reprasentiert Zeitstempel, also einen bestimmten Zeitpunkt.
Dieser Datentyp ist sehr machtig, da wir damit nicht nur einen Zeitpunkt, sondern auch
Zeitdifferenzen und Zeitintervalle darstellen kénnen. Aktuell ist die Spalte 1ast review in
unserem df2 noch ein String. Wir kbnnen das Datum also lesen, doch wie auch mit dem
price Spalte vor der Umwandlung in eine numerische Spalte kénnten wir so keine
sinnvollen Analysen durchfiihren. Das wird spatestens dann klar, wenn man nach der
Spalte sortieren will und merkt, dass die Sortierung nicht chronologisch, sondern
alphabetisch ist.

df2.sort values('last review')

) BioMath

8/14

) BioMath

NAME price last review

15 West Village Nes... 578.0 10/31/2018
11 Beautiful 1lbr on... 606.0 6/22/2019
12 Central Manhatta... 714.0 6/23/2019
13 Lovely Room 1, G... 580.0 6/24/2019
10 Cute & Cozy Lowe... 319.0 6/9/2019
14 Wonderful Guest ... 149.0 7/5/2019

Dies wiederum flhrt z.B. dann zu Problemen, wenn man die Werte chronologisch auf
einer Achse eine Abbildung darstellen will.

Um die Spalte in einen datetime Datentyp umzuwandeln, kdnnen wir die

pd.to datetime() Funktion verwenden. Diese Funktion ist sehr machtig und kann viele
verschiedene Datums-Formate erkennen. Da die Daten hier in einem Standardformat
vorliegen, reicht es einfach die Spalte zu GUbergeben.

df2['last review date'] = pd.to datetime(df2['last review'])
df2.sort values('last review date')

NAME price last review last review date

15 West Village Nes... 578.0 10/31/2018 2018-10-31
10 Cute & Cozy Lowe... 319.0 6/9/2019 2019-06-09
11 Beautiful 1lbr on... 606.0 6/22/2019 2019-06-22
12 Central Manhatta... 714.0 6/23/2019 2019-06-23
13 Lovely Room 1, G... 580.0 6/24/2019 2019-06-24
14 Wonderful Guest ... 149.0 7/5/2019 2019-07-05

Nun funktioniert auch direkt die Sortierung. Es fallt auf, dass das Datum nun als Jahr-
Monat-Tag angegeben ist, wo es doch vorher im String als Monat/Tag/Jahr geschrieben
war. Das liegt daran, dass Pandas das ISO Format bevorzugt, welches international
einheitlich ist und so keine Verwechslungen zulasst'. Beeindruckenderweise hat

pd.to datetime() das vorliegende Format automatisch erkannt und umgewandelt. In der
Praxis wird dies allerdings nicht immer so reibungslos funktionieren, da es viele
verschiedene Datumsformate gibt. In solchen Fallen kdnnen wir das Format auch
explizit angeben:

df2['last review date'] = pd.to datetime(
df2['last review'],
format="%m/%d/%Y"

'Ein weiterer Vorteil des ISO-Formats ist, dass es sich auch als String alphabetisch sinnvoll sortieren
lasst, da die Zahlen in der Reihenfolge der GréRe angeordnet sind.

9/14

https://de.wikipedia.org/wiki/ISO_8601

df2.sort values('last review')

NAME price last review last review date

15 West Village Nes... 578.0 10/31/2018 2018-10-31
11 Beautiful 1lbr on... 606.0 6/22/2019 2019-06-22
12 Central Manhatta... 714.0 6/23/2019 2019-06-23
13 Lovely Room 1, G... 580.0 6/24/2019 2019-06-24
10 Cute & Cozy Lowe... 319.0 6/9/2019 2019-06-09
14 Wonderful Guest ... 149.0 7/5/2019 2019-07-05

Im Argument format kdnnen wir verschiedene Codes verwenden, um das Format zu
spezifizieren. Der String enthalt also die zwei / Zeichen, die wir in den Daten haben, und
die Codes %m, %d und %Y, die fir Monat, Tag und Jahr stehen. Die Codes sind in der
Dokumentation aufgelistet. So steht sy z.B. fiir ein vierstelliges Jahr, %y fur ein
zweistelliges Jahr, %m fir einen zweistelligen Monat, %M aber wiederum fiir Minuten. Auch
dies ist wie schon Regex zum Arbeiten mit Strings ein Beispiel fur eine Art separater
Sprache, die man nicht unbedingt lernen, aber zumindest nachschlagen muss, um
effektiv mit Pandas arbeiten zu kénnen.

category

Der category Datentyp ist ein spezieller Datentyp, der flr kategorische Variablen
verwendet wird. Kategorische Variablen sind Variablen, die nur eine begrenzte Anzahl
von diskreten Werten annehmen kdnnen. Ein Beispiel ware z.B. die Spalte room_type in
unserem AirBnB Datensatz. Diese Spalte hat nur vier verschiedene Werte: Entire home/
apt, Hotel room, Private room und Shared room.

room types = df['room type'].unique()
room_types

array(['Private room', 'Entire home/apt', 'Shared room', 'Hotel room'],
dtype=object)

Um die Spalte in einen kategorischen Datentyp umzuwandeln, kdnnen wir die astype()
Methode verwenden. Der Vorteil von kategorischen Variablen ist, dass sie weniger
Speicherplatz bendétigen und schneller zu verarbeiten sind. Das liegt daran, dass
Pandas die Werte als Zahlen speichert und eine separate Tabelle mit den zugehdrigen
Werten fihrt. So wird z.B. Entire home/apt als 0, Hotel room als 1, Private room als 2
und Shared room als 3 gespeichert. Das bedeutet demnach auch, dass diese diskreten
Stufen/Level nun immer in der entsprechenden Reihenfolge sortiert werden, was z.B. bei
einer Abbildung von Vorteil sein kann.

10

) BioMath

10/ 14

https://docs.python.org/3/library/datetime.html#strftime-and-strptime-format-codes

) BioMath

df['room type']

0 Private room
1 Entire home/apt
2 Private room
102596 Private room

102597 Entire home/apt
102598 Entire home/apt
Name: room type, Length: 102599, dtype: object

df['room type'] = df['room type'].astype('category')
df['room type'l]

0 Private room
1 Entire home/apt
2 Private room
102596 Private room

102597 Entire home/apt

102598 Entire home/apt

Name: room type, Length: 102599, dtype: category

Categories (4, object): ['Entire home/apt', 'Hotel room', 'Private room',
'Shared room']

Wie man sieht hat sich der Inhalt der Spalte nicht wirklich verandert, doch der Datentyp
ist nun category. AulRerdem wird deshalb auch Categories (4, object): ['Entire home/
apt', 'Hotel room', 'Private room', 'Shared room'] angezeigt, was bedeutet, dass es
vier Kategorien gibt und diese in der genannten Reihenfolge sortiert sind. Wie man sieht,
werden die Stufen standardmaRig alphabetisch sortiert. Wollen wir eine andere
Reihenfolge, kdnnen wir dies wie folgt mit . cat.set categories() tun. Aulderdem gibt es
die Mdglichkeit, die Kategorien mit ordered=True als geordnet zu definieren, was
bedeutet, dass die Reihenfolge der Kategorien eine signifikante Rolle spielt:

meine_stufen = ['Shared room', 'Private room', 'Hotel room', 'Entire home/
apt']

df['room type'] = df['room type'].cat.set categories(
meine stufen,
ordered=False

11

11/ 14

df['room type']

0 Private room
1 Entire home/apt
2 Private room
102596 Private room

102597 Entire home/apt
102598 Entire home/apt
Name: room type, Length: 102599, dtype: category

Categories (4, object): ['Shared room', 'Private room', 'Hotel room', 'Entire
home/apt"']
df['room type'] = df['room type'].cat.set categories(

meine stufen,
ordered=True

df['room type']

0 Private room
1 Entire home/apt
2 Private room
102596 Private room

102597 Entire home/apt

102598 Entire home/apt

Name: room type, Length: 102599, dtype: category

Categories (4, object): ['Shared room' < 'Private room' < 'Hotel room' <
'"Entire home/apt']

Wenn man ordered=True setzt, erklart man, dass die Reihenfolge der Kategorien eine
signifikante Rolle spielt. Man erkennt das im Output daran, dass zwischen den Stufen
ein < anstelle eines , steht. Es bedeutet, dass die Kategorien nicht nur eine Reihe von

verschiedenen Werten darstellen, sondern dass zwischen den Werten eine spezifische,

sinnvolle Ordnung existiert. Diese ware hier z.B. der Fall, aber auch bei anderen
Variablen wie z.B. Schulnoten oder Kleidergrofien. Nicht der Fall ware es z.B. bei
Farben (wenn man nicht gerade auf Wellenlangen oder Helligkeit abzielt),
Geschlechtern oder bei den Namen von Landern.

So oder so werden die Kategorien nun in der Reihenfolge angezeigt, die wir angegeben

haben, wenn wir jedoch zusatzlich ordered=True setzen, kbnnen wir auch mit den

12

) BioMath

12/ 14

Kategorien rechnen. So kénnen wir z.B. Operationen wie < oder > auf den kategorischen
Spalten durchfiihren, was bei nicht-geordneten Kategorien nicht méglich ist.

Man kann Ubrigens auch direkt beim Umwandeln in den kategorischen Datentyp die
Reihenfolge angeben, indem man die Kategorien als Liste Gibergibt und
pd.Categorical() nutzt:

farben = ['Rot', 'Gelb', 'Blau']
farb_df = pd.DataFrame({'Farbe': farben})

Umwandlung in eine kategorische Variable ohne Ordnung
farb df['Farbe unordered'] = pd.Categorical(

farb _df['Farbe'],

categories=farben,

ordered=False

Umwandlung in eine kategorische Variable mit Ordnung
farb_df['Farbe ordered'] = pd.Categorical(

farb _df['Farbe'],

categories=farben,

ordered=True

farb df

Farbe Farbe unordered Farbe ordered

0 Rot Rot Rot
1 Gelb Gelb Gelb
2 Blau Blau Blau

farb df[farb df['Farbe ordered'] > 'Rot']

Farbe Farbe unordered Farbe ordered
1 Gelb Gelb Gelb
2 Blau Blau Blau

farb _df[farb df['Farbe unordered'] > 'Rot']

TypeError: Unordered Categoricals can only compare equality or not

Im Endeffekt sollten wir also immer dann, wenn wir wissen, dass eine Spalte nur eine
begrenzte Anzahl von diskreten Werten annehmen kann, diese in einen kategorischen

13

< BioMath

13/14

) BioMath

Datentyp umwandeln. Dies ist nicht nur effizienter, sondern auch sicherer, da wir so
sicherstellen, dass keine falschen Werte eingegeben werden kénnen.

© Weitere Ressourcen

» Pandas Tutorial #17 - DateTime (Python fir Data Science)

» Pandas Tutorial #18 - Datum und Uhrzeit als Index (Python fir Data Science)
* Pandas Tutorial #11 - Mehr zu Kategorien (Python fiir Data Science)

* Die Beispiele in der pandas.Series.cat Dokumentation

Ubungen

Flge dem AirBnB Datensatz eine neue Spalte servicegebuehr_eur hinzu, die die
Servicegebuhr der Unterkunft (=Spalte service fee) als numerischen Wert und in Euro
angibt. Nimm dazu an, dass 1,00 Euro genau 1,07 Dollar entspricht. Filtere daraufthin
nur die Unterkinfte mit einer Servicegeblhr von héchstens 15 Euro heraus.

* Von den insgesamt 102599 Unterklnften haben eine Servicegebuhr von
maximal 15 Euro.
Erzeuge eine neue Spalten preiskategorie, die die Servicegebihren der Unterklnfte in

die Kategorien “gunstig”, “mittel” und “teuer” einteilt. Die Kategorien sollen dabei
folgendermafen definiert sein:

* “gunstig” fir Servicegebihren unter 20 Euro
» “mittel” fir Servicegebihren ab 20 und bis 50 Euro
» “teuer” fr Servicegebuhren ber 50 Euro

Die erzeugte Spalte soll am Ende als kategorischer Datentyp vorliegen und die Stufen

LT

dabei in der Reihenfolge “glinstig”, “mittel”, “teuer” sortiert sein.
* (A) Geschafft

Fir ein Szenario wie das obige, in dem wir Kategorien basierend auf Schwellenwerten
definieren, gibt es auch eine spezielle Methode in Pandas, die .cut() Methode. Diese
Methode ist sehr machtig und kann sogar auch mit Zeitstempeln umgehen. Mache dich
selbst mit dieser Methode vertraut und versuche die obige Ubung damit - anstelle mit
case_when() - zu l6sen. Ein guter Startpunkt sind die Beispiele in der Dokumentation hier
und hier oder auch dieses Youtube Video.

* (A) Geschafft

14

14 /14

https://youtu.be/rfmiu5NKFjI?si=uH6GXluE12ccQXfV
https://youtu.be/fyi83xMSLjw?si=mMib84Ns9OCPLjCp
https://youtu.be/HaLpJgaGBTE?si=MXVw3rKk10qjQ3gT
https://pandas.pydata.org/docs/reference/api/pandas.Series.cat.html
https://pandas.pydata.org/docs/reference/api/pandas.Series.cat.html
https://pandas.pydata.org/docs/reference/api/pandas.Series.cat.html
https://pandas.pydata.org/docs/dev/user_guide/reshaping.html#reshaping-tile-cut
https://pandas.pydata.org/docs/reference/api/pandas.cut.html
https://youtu.be/MJt6NotH4fY?si=WcWeHdCsB_ji7wM1

	Spalten erzeugen
	Die .assign() Methode
	Die insert() Methode

	Spalten bearbeiten
	Die .case_when() Methode
	Weitere Datentypen
	datetime
	category

	Übungen

