< BioMath

Zeilen filtern
by Woche 8

Wie in den vorigen Kapiteln setzen wir zunachst wieder Pandas Optionen und
importieren unseren AirBnB Datensatz.

import pandas as pd

pd.set option('display.max_columns', 4)
pd.set option('display.max_rows', 6)
pd.set option('display.max colwidth', 20)

csv_url = 'https://github.com/SchmidtPaul/ExampleData/raw/main/airbnb open
data/Airbnb Open Data.csv'
df = pd.read csv(csv_url, dtype={25: str})

df

id NAME ... house rules license
0 1001254 Clean & quiet ap... ... Clean up and tre... NaN
1 1002102 Skylit Midtown C... ... Pet friendly but... NaN
2 1002403 THE VILLAGE OF H... ... I encourage you ... NaN
102596 6093542 Comfy, bright ro... ... NaN NaN
102597 6094094 Big Studio-One S... ... NaN NaN
102598 6094647 585 sf Luxury St... ... NaN NaN

[102599 rows x 26 columns]

In diesem Abschnitt konzentrieren wir uns auf das Auswahlen von Zeilen. Zuvor sollten
wir jedoch die verwendeten Begriffe klaren, insbesondere den Unterschied zwischen
“Zeilen filtern” und “Spalten selektieren”. Die Unterscheidung ist nicht immer eindeutig,
da man eigentlich auch Zeilen selektieren oder Spalten herausfiltern kann. Trotzdem hat
sich durch spezifische Funktionen in Programmiersprachen wie z.B. SQL (SELECT/FILTER)
oder R (select()/filter()) ein gewisser Zusammenhang zwischen den erstgenannten
Begriffspaaren etabliert. Die Begriffe lassen sich jedoch, wenn Gberhaupt, nur grob
voneinander abgrenzen: “filtern” impliziert in der Regel, dass eine Bedingung erfullt sein
muss, wahrend “selektieren” eher darauf hindeutet, dass eine explizite, bekannte
Auswahl getroffen wird. In der Praxis muss man Zeilen haufiger filtern und Spalten eher
selektieren.

1/17

) BioMath

Zeilen selektieren

Der Vollstandigkeit halber wollen wir also zuerst doch kurz darauf eingehen, wie man
auch Zeilen einfach selektieren kann. Speziell in Python und Pandas ist dies namlich
dem Spalten selektieren prinzipiell &hnlich, da die Indices von Zeilen in gewisser Weise
gehandhabt werden wie die Indices von Spalten. Fur die direkte Vergleichbarkeit zum
vorangegangen Kapitel zur Spaltenselektion sind hier dieselben vier Stichpunkte analog
fur Zeilen:

Fir die ersten beiden Punkte gibt es in Pandas also keine direkte Entsprechung flr
Zeilen. Ebenfalls gilt es wieder zu unterscheiden ob man beim Selektieren einer
einzelnen Zeile eine Series oder einen Dataframe mit einer Zeile erhalt.

Eine Zeile als Series

df.loc[0]

df.iloc[0]

id 1001254
NAME Clean & quiet ap...
host id 80014485718
availability 365 286.0
house rules Clean up and tre...
license NaN

Name: 0, Length: 26, dtype: object

Eine Zeile als DataFrame

df.loc[[0]]
df.iloc[[0]]

id NAME ... house rules license
0 1001254 C(Clean & quiet ap... ... Clean up and tre... NaN

[1 rows x 26 columns]

Mehrere Zeilen als DataFrame

df.loc[[0, 1]]
df.iloc[[0, 1]]

2/17

) BioMath

id NAME ... house rules license
0 1001254 C(Clean & quiet ap... ... Clean up and tre... NaN
1 1002102 Skylit Midtown C... ... Pet friendly but... NaN

[2 rows x 26 columns]

Was fur etwas Verwirrung sorgen kdnnte ist die Tatsache, dass hier sowohl in .1loc[] als
auch in .iloc[] die Zeilenindizes in eckigen Klammern stehen. Der Unterschied sollte ja
sein, dass .loc[] die Zeilen anhand ihres Namens auswahlt, wahrend .iloc[] die Zeilen
anhand ihres Index auswahlt. Da wir standardmaf3ig und so eben auch hier aber keine
expliziten Zeilennamen haben, ist also der Zeilenname gleich dem Index und wir kdnnen
die beiden Methoden hier gleich verwenden.

Zeilenindices bearbeiten

Jetzt ist also ein guter Zeitpunkt um mal die Zeilenindices zu verandern und ihnen
tatsachlich Namen/Label zu geben. Das geht z.B. mit der Methode .set index(). Hierbei
wird eine im Dataframe vorhandene Spalte als Index festgelegt, also zum Index
konvertiert, sodass die Zeilen dann anhand der Eintrage in dieser Spalte ausgewahlt
werden kénnen. In unserem Fall bietet sich die Spalte id an, da diese eindeutig und
somit als Index geeignet ist. Die Spalte id wird also anstelle der Standard-Indices als
Index festgelegt und ist dann auch nicht mehr als “normale Spalte” im Dataframe.

df.set index('id', inplace=True)

df

NAME host id ... house rules license
id ca
1001254 Clean & quiet ap... 80014485718 ... Clean up and tre... NaN
1002102 Skylit Midtown C... 52335172823 ... Pet friendly but... NaN
1002403 THE VILLAGE OF H... 78829239556 ... I encourage you ... NaN
6093542 Comfy, bright ro... 69050334417 ... NaN NaN
6094094 Big Studio-One S... 11160591270 ... NaN NaN
6094647 585 sf Luxury St... 68170633372 ... NaN NaN

[102599 rows x 25 columns]

Nun wére die erste Zeile zwar weiterhin mit df.iloc[[0]], aber eben mit
df.loc[[16001254]] zu selektieren:

df.loc[[1001254]]

3/17

NAME host id
id
1001254 Clean & quiet ap... 80014485718

[1 rows x 25 columns]

Dabei kann der Index zum Einen auch ein String sein und zum Anderen mit index col=

auch direkt beim Import festgelegt werden.

df = pd.read csv(
csv_url,
dtype={25: str},
index_col="NAME'
)

df

id host id
NAME
Clean & quiet apt... 1001254 80014485718
Skylit Midtown Ca... 1002102 52335172823
THE VILLAGE OF HA... 1002403 78829239556
Comfy, bright roo... 6093542 69050334417
Big Studio-One St... 6094094 11160591270

585 sf Luxury Studio 6094647 68170633372

[102599 rows x 25 columns]

df.loc[['Clean & quiet apt home by the park'l]]

id host id
NAME
Clean & quiet apt... 1001254 80014485718
[1 rows x 25 columns]
df.iloc[[0]]

id host id
NAME
Clean & quiet apt... 1001254 80014485718

4

house rules license

Clean up and tre... NaN

house rules license

Clean up and tre... NaN
Pet friendly but... NaN
I encourage you ... NaN
NaN NaN
NaN NaN
NaN NaN

house rules license

Clean up and tre... NaN

house rules license

Clean up and tre... NaN

) BioMath

4717

) BioMath

[1 rows x 25 columns]

Fir den Moment setzen wir den Index mit . reset_index() wieder zurtick, um uns nun
auf das Filtern zu konzentrieren.

df = df.reset _index()

df

NAME id ... house rules license
0 Clean & quiet ap... 1001254 ... Clean up and tre... NaN
1 Skylit Midtown C... 1002102 ... Pet friendly but... NaN
2 THE VILLAGE OF H... 1002463 ... I encourage you ... NaN
102596 Comfy, bright ro... 6093542 ... NaN NaN
102597 Big Studio-One S... 6094094 ... NaN NaN
102598 585 sf Luxury St... 6094647 ... NaN NaN

[102599 rows x 26 columns]

Zeilen filtern

Nun wollen wir uns dem eigentlichen Thema widmen: dem Filtern. Hierbei wird eine
Bedingung definiert, die fur jede Zeile Uberpruft wird. Wenn die Bedingung erfullt ist, wird
die Zeile beibehalten, ansonsten verworfen.

An dieser Stelle ist es sinnvoll, dass wir uns vorest einen Ubersichtlichen Teildatensatz
erzeugen um mit diesem zu arbeiten. Dazu selektieren wir folgende 6 Zeilen und 4
Spalten:

df2 = df.loc[0:5, ['room type', 'minimum nights', 'Construction year']]
df2

room type minimum nights Construction year

0 Private room 10.0 2020.0
1 Entire home/apt 30.0 2007.0
2 Private room 3.0 2005.0
3 Entire home/apt 30.0 2005.0
4 Entire home/apt 10.0 2009.0
5 Entire home/apt 3.0 2013.0

Wie man pruft, also einen boolschen Wert True oder False erhalt, haben wir schon frih
in Kapitel 2.2 Datentypen gelernt. So kdnnen wir prifen ob eine Zahl z.B. gleich 2005 ist,
indem wir den == Operator verwenden. Praktischerweise, kbnnen wir mit Pandas auch
direkt eine ganze Spalte auf diese Weise prifen. Es wird also nicht gepruft ob eine

5/17

) BioMath

bestimmte Spalte dasselbe ist wie 2005, sondern ob jede einzelne Zelle in der Spalte
gleich 2005 ist. Das Ergebnis ist dann entsprechend eine Spalte mit True und False
Werten.

X = 2005
X == 2005
True

df2['Construction year'] == 2005

False
False
True
True
False
False
Name: Construction year, dtype: bool

u b~ WNPEFE O

Diese Spalte kdnnen wir dann Gbergeben und behalten nur die Zeilen, die True sind. Die
Daten wurden also entsprechend der Bedinung gefiltert. Dabei kann die Bedingung
entweder direkt Ubergeben oder vorher in einer Variable gespeichert werden. Letzteres
wird ggf. als Ubersichtlicher empfunden und ergibts spatestens dann Sinn, wenn die
Bedingung komplex ist und/oder mehrfach verwendet wird.

df2[df2['Construction year'] == 2005]

room type minimum nights Construction year
2 Private room 3.0 2005.0
3 Entire home/apt 30.0 2005.0

gebaut 2005 = df2['Construction year'] == 2005
df2[gebaut 2005]

room type minimum nights Construction year
2 Private room 3.0 2005.0
3 Entire home/apt 30.0 2005.0

6/17

< BioMath

Bedingung umkehren

Manchmal ist es nétig oder intuitiver eine Bedingung umzukehren. Dies kann mit dem ~
Operator erreicht werden. Dabei werden dann dementsprechend alle True Werte zu
False und umgekehrt.

gebaut 2005

False
False
True
True
False
False
ame: Construction year, dtype: bool

= U~ WNPFPO

~gebaut 2005

0 True
1 True
2 False
3 False
4 True
5 True
Name: Construction year, dtype: bool

Mehrere Bedingungen

Mehrere Bedingungen kénnen mit den logischen Operatoren & (und) und | (oder)
verknipft werden. Dabei ist es wichtig, die Bedingungen in Klammern zu setzen, um die
Reihenfolge der Operationen zu steuern.

& (und)

Wollen wir beispielsweise alle Zeilen behalten, die den Zimmertyp Ganze Wohnung/
Haus haben und weniger als 15 Nachte Mindestaufenthalt aufweisen, so kénnen wir
dies wie folgt umsetzen:

behalten = (df2['room type'] == 'Entire home/apt') & (df2['minimum nights'] <
15)
df2[behalten]

7

7117

) BioMath

room type minimum nights Construction year

4 Entire home/apt 10.0 2009.0
5 Entire home/apt 3.0 2013.0
| (oder)

Wollen wir stattdessen alle Zeilen behalten, die den Zimmertyp Privatzimmer oder
Baujahr 2005 haben, so kénnen wir dies so umsetzen:

behalten = (df2['room type']l == 'Private room') | (df2['Construction year'] ==
2005)
df2[behalten]

room type minimum nights Construction year

0 Private room 10.0 2020.0
2 Private room 3.0 2005.0
3 Entire home/apt 30.0 2005.0

Beachte, dass | in Python OR und nicht XOR bedeutet. XOR bedeutet, dass wirklich nur
eine der beiden Bedingungen erfiillt sein darf. In diesem Fall ware die mittlere, gefilterte
Zeile dementsprechend nicht enthalten, da sie sowohl den Zimmertyp Privatzimmer als
auch das Baujahr 2005 hat. Der XOR Operator ist ~.

Klammern

SchlieRlich muss klar sein, dass die Klammern in der Bedingung nicht nur fir die
Lesbarkeit, sondern auch fir die korrekte Ausfiihrung notwendig sind. Um dies zu
demonstrieren wollen wir folgende drei Bedingungen vorbereiten und sie dann mal in
verschiedenen Kombinationen ausfiihren, wobei die Operatoren & und | aber
uvnerandert bleiben:

bedl = df2['Construction year'] > 2005
bed2 = df2['room type']l == 'Private room'
bed3 = df2['minimum nights'] > 15

df2[bedl & bed2 | bed3]

room type minimum nights Construction year
0 Private room 10.0 2020.0

8 /17

https://de.wikipedia.org/wiki/Exklusiv-Oder-Gatter#:~:text=Ein%20Exklusiv%2DOder%2DGatter%2C,an%20dem%20anderen%20%E2%80%9E0%E2%80%9C.

) BioMath

1 Entire home/apt 30.0 2007.0
3 Entire home/apt 30.0 2005.0

df2[bedl & (bed2 | bed3)]

room type minimum nights Construction year
0 Private room 10.0 2020.0
1 Entire home/apt 30.0 2007.0

Es zeigt sich, dass die unterschiedliche Setzung von Klammern auch zu unterschiedlich
gefilterten Ergebnissen fuhren. Ohne Klammern wird zuerst bed1l & bed2 berechnet und
dann mit bed3 verknupft. Mit Klammern wird zuerst bed2 | bed3 berechnet und dann mit
bedl verknUpft.

Die .isin() Methode

Eine weitere Moglichkeit, mehrere Bedingungen zu verknlpfen, ist die .isin() Methode.
Diese Methode priift, ob ein Wert in einer Liste von Werten enthalten ist. Sie prift also in
gewisser Hinsicht mehrere Bedingungen gleichzeitig. Hier der Vergleich um mit und
ohne .isin() zu filtern ob das Baujahr 2020, 2009 oder 2005 ist:

ist 2020 = df2['Construction year'] == 2020
ist 2009 = df2['Construction year'] == 2009
ist 2005 = df2['Construction year'] == 2005

df2[ist 2020 | ist 2009 | ist 2005]

room type minimum nights Construction year

0 Private room 10.0 2020.0
2 Private room 3.0 2005.0
3 Entire home/apt 30.0 2005.0
4 Entire home/apt 10.0 2009.0

ok _jahre = [2020, 2009, 2005]
ist ok = df2['Construction year'].isin(ok jahre)

df2[ist_ok]

room type minimum nights Construction year
0 Private room 10.0 2020.0

9/17

) BioMath

2 Private room 3.0 2005.0
3 Entire home/apt 30.0 2005.0
4 Entire home/apt 10.0 2009.0

Die .between() Methode

Die .between() Methode ist eine weitere Mdglichkeit, um Bedingungen zu formulieren.
Sie pruft, ob ein Wert zwischen zwei anderen Werten liegt. Hier der Vergleich um mit
und ohne .between() zu filtern ob das Baujahr zwischen 2006 und 2015 liegt:

ist nach 2008 = df2['Construction year'] > 2006
ist vor 2015 = df2['Construction year'] < 2015

df2[ist nach 2008 & ist vor 2015]

room type minimum nights Construction year

1 Entire home/apt 30.0 2007.0
4 Entire home/apt 10.0 2009.0
5 Entire home/apt 3.0 2013.0

zwi = df2['Construction year'].between(2006, 2015)

df2[zwi]
room type minimum nights Construction year
1 Entire home/apt 30.0 2007.0
4 Entire home/apt 10.0 2009.0
5 Entire home/apt 3.0 2013.0
String-Methoden

Wie schon im letzten Kapitel zur Selektion von Spalten anhand ihres Namens, kénnen
natdrlich auch hier beim Filtern String-Methoden

wie .str.contains(), .str.startswith(), .str.endswith() zum Filtern von Text/String-
Spalten eingesetzt werden. Als Beispiel kdnnten wir wie folgt feststellen, dass 800
unserer >100,000 Bezeichnung von AirBnB Unterkinften mit “Clean” beginnen:

beginnt mit Clean = df['NAME'].str.startswith('Clean', na=False)
df[beginnt mit Clean]

10

10/ 17

NAME id ... house rules license
0 Clean & quiet ap... 1001254 ... Clean up and tre... NaN
37 Clean and Quiet ... 1021771 ... NO Shoes in the ... NaN
180 Clean and Cozy H... 1100750 ... We live on the p... NaN
102384 Clean cozy overn... 20361660 ... We have a no sho... NaN
102468 Clean, Cozy Home... 20408053 ... All guests are e... NaN
102564 Clean & Cozy- Pr... 6075868 ... NaN NaN

[800 rows x 26 columns]

1 na=False

Wie schon im letzten Kapitel erwahnt, gehen wir auf Fehlwerte erst in einem
folgenden Kapitel ein. Dennoch muss in der obigen Funktion .str.startswith() der
Parameter na=False gesetzt werden, um Fehlwerte zu ignorieren. Ohne dieses
Argument wirde die Funktion standardmaRig einen Fehler werfen, da in der Spalte
NAME Fehlwerte enthalten sind und diese nich ohne weiteres verarbeitet werden.

Die .query() Methode

Man kann auch alternativ die .query() Methode zum Filtern von Zeilen verwenden. In
diese Methode kdnnen wir prinzipiell dieselben Bedingungen schreiben wie in den
vorherigen Beispielen, allerdings als String mit leicht abgeanderter Syntax. Hier eine
direkt Gegenuberstellung:

df [df['NAME'] == 'Great Location for NYC']
NAME id ... house rules license
89 Great Location f... 1050491 ... I just ask that ... NaN

[1 rows x 26 columns]

df.query('NAME == "Great Location for NYC"')
NAME id ... house rules license
89 Great Location f... 1050491 ... I just ask that ... NaN

[1 rows x 26 columns]

Allerdings mussten Spaltennamen, die Leerzeichen enthalten, in der .query() Methode
in diese * Anfuhrungszeichen gesetzt werden.

11

) BioMath

11/17

) BioMath

df2[df2['Construction year'] == 2005]

room type minimum nights Construction year

2 Private room 3.0 2005.0
3 Entire home/apt 30.0 2005.0
df2.query(' Construction year == 2005')

room type minimum nights Construction year
2 Private room 3.0 2005.0
3 Entire home/apt 30.0 2005.0

Die .query() Methode ist also schlichtweg eine alternative Schreibweise, die in manchen
Fallen Gbersichtlicher sein kann. Dartber hinaus kann die .query() Methode in
bestimmten Fallen schneller als die herkdmmliche Methode sein.

Duplikate entfernen

Zuletzt wollen wir noch auf das Entfernen von Duplikaten eingehen, das letztendlich
auch eine Form des Filterns ist. Hierbei wird jede Zeile mit einer anderen Zeile
verglichen und entfernt, wenn sie identisch ist. Die Methode .duplicated() gibt eine
Spalte mit True und False Werten zurlick, die angibt, ob eine Zeile bereits vorher
vorkam. Erzeugen wir uns zunachst einen noch kleineren Teildatensatz df3, in welchem
identische Zeilen, also Duplikate vorliegen:

df3 = df2[['room type', 'minimum nights']]

df3

room type minimum nights
0 Private room 10.0
1 Entire home/apt 30.0
2 Private room 3.0
3 Entire home/apt 30.0
4 Entire home/apt 10.0
5 Entire home/apt 3.0

df3.duplicated()

0 False
1 False

12

12/ 17

) BioMath

2 False
3 True
4 False
5 False
dtype: bool

Es wird also nur die erste auftretende Zeile als nicht dupliziert betrachtet. Die
Kombination aus room type Entire home/apt und minimum nights 30.0 taucht also in der
zweiten Zeile erstmals auf und ist dort somit nicht als Duplikat markiert. In der vierten
Zeile taucht sie dann aber erneut auf und ist somit als Duplikat markiert. Um Duplikate
zu entfernen kénnten wir nun die durch .duplicated() erzeugte Series verwenden und
sie mittels ~ umkehren. Allerdings gibt es auch die noch einfachere

Variante .drop_duplicates(), die direkt die Duplikate entfernt:

df3[~df3.duplicated()]

room type minimum nights

0 Private room 10.0
1 Entire home/apt 30.0
2 Private room 3.0
4 Entire home/apt 10.0
5 Entire home/apt 3.0

df3.drop duplicates()

room type minimum nights

0 Private room 10.0
1 Entire home/apt 30.0
2 Private room 3.0
4 Entire home/apt 10.0
5 Entire home/apt 3.0

SchlielYlich soll noch erwahnt sein, dass die Methode .drop duplicates() auch die
Maoglichkeit bietet, bei der Einstufung was ein Duplikat ist, nur einige der vorhandenen
Spalten zu berlcksichten. Dazu wird der Parameter subset= verwendet, der eine Liste
von Spaltennamen erwartet. Wir kénnten also hier zur selben Aussortierung von
Duplikaten wie soeben mit df3 kommen, auch wenn df2 zugrundeliegt. Dessen
zusatzliche Spalte Construction year wirde eigentlich dafiir sorgen, dass die zweite und
vierte Zeile nicht als Duplikate betrachtet werden, da sie ja unterschiedliche Baujahre
vorweisen. Da wir diese Spalte aber nicht in die Uberpriifung einbeziehen, werden sie
dennoch als Duplikate betrachtet und entfernt:

13

13/ 17

df2.drop_duplicates()

room type minimum nights Construction year

0 Private room 10.0 2020.0
1 Entire home/apt 30.0 2007.0
2 Private room 3.0 2005.0
3 Entire home/apt 30.0 2005.0
4 Entire home/apt 10.0 2009.0
5 Entire home/apt 3.0 2013.0
df2.drop _duplicates(subset=['room type', 'minimum nights'])
room type minimum nights Construction year
0 Private room 10.0 2020.0
1 Entire home/apt 30.0 2007.0
2 Private room 3.0 2005.0
4 Entire home/apt 10.0 2009.0
5 Entire home/apt 3.0 2013.0

Zeilen sortieren

Zum Abschluss wollen wir noch kurz auf das Sortieren von Zeilen eingehen. Dies kann
mit der Methode .sort values() erreicht werden. Diese Methode erwartet den Namen
der Spalte, nach der sortiert werden soll. Mit dem Parameter ascending= kann die
Sortierreihenfolge festgelegt werden, wobei es standardmafig auf True gesetzt ist,
sodass die Werte von oben nach unten aufsteigen. Hier ein Beispiel, wie wir den
Teildatensatz df2 nach der Spalte minimum nights sortieren:

df2.sort _values('minimum nights"')

room type minimum nights Construction year

2 Private room 3.0 2005.0
5 Entire home/apt 3.0 2013.0
4 Entire home/apt 10.0 2009.0
0 Private room 10.0 2020.0
3 Entire home/apt 30.0 2005.0
1 Entire home/apt 30.0 2007.0

df2.sort _values('minimum nights', ascending=False)

14

) BioMath

14 /17

) BioMath

room type minimum nights Construction year

1 Entire home/apt 30.0 2007.0
3 Entire home/apt 30.0 2005.0
0 Private room 10.0 2020.0
4 Entire home/apt 10.0 2009.0
2 Private room 3.0 2005.0
5 Entire home/apt 3.0 2013.0

Natdrlich kann auch nach mehreren Spalten sortiert werden, indem eine Liste von
Spaltennamen Ubergeben wird. Die Sortierreihenfolge wird dabei von links nach rechts
festgelegt. Hier ein Beispiel, wie wir den Teildatensatz df2 zuerst nach room type
(aufsteigend, alphabetisch) und dann (also innerhalb desselben room types) nach
minimum nights (absteigend) sortieren:

df2.sort _values(
by=['room type', 'minimum nights'],
ascending=[True, False]

)

room type minimum nights Construction year

1 Entire home/apt 30.0 2007.0
3 Entire home/apt 30.0 2005.0
4 Entire home/apt 10.0 2009.0
5 Entire home/apt 3.0 2013.0
0 Private room 10.0 2020.0
2 Private room 3.0 2005.0

Es gibt auch eine analoge Methode .sort_index(), die den Index des Dataframes
sortiert. Auch hier kann der Parameter ascending= verwendet werden.

Thematisch passend ist auch die Funktion . rank(), die die Range der Zeilen bestimmt.
Das heil}t, dass die Daten nicht sortiert zurlickgegeben werden, sondern die Range der
Zeilen in der urspriinglichen Reihenfolge. Hier ein Beispiel, wie wir den Teildatensatz df2
nach der Spalte Construction year ranken. Wann immer es ein Unentschieden gibt, wird
der Durchschnittsrang vergeben. Man kann aber auch .astype(int) anhangen, um die
Range in Ganzzahlen zu konvertieren.

Hinweis: Wir erzeugen hier eine neue Spalte rank, die die Rdnge enthélt. Eigentlich
behandeln wir das erzeugen und bearbeiten von Spalten aber erst im ndchsten Kapitel.

df5 = df2[['Construction year']]
df5['rank'] = df5['Construction year'].rank()
df5

15

15 /17

) BioMath

Construction year r
2020.
2007.
2005.
2005.
2009.
2013.

u b WNRFE O
[cloloNolNoNo]
U PR WO
© O U1 Ul o © X

df5 = df2[['Construction year']]
df5['rank'] = df5['Construction year'].rank().astype(int)
df5

Construction year rank
2020.
2007 .
2005.
2005.
2009.
2013.

U D WNRO
Ol c ol oo o)
UDRRRPR WO

Ubungen

In einem vorangegangenen Kapitel wurden bereits die Hilfsfunktionen .head()

und .tail() vorgestellt, die die ersten bzw. letzten Zeilen eines Dataframes ausgeben.
Wie kdnnte man mit .iloc[] zum selben Ergebnis kommen?

* df.head() entspricht df.iloc[1]
e df.tail() entspricht df.iloc[1]

Die Spalte review rate number enthalt die durchschnittliche Bewertung einer Unterkunft.
Wie hoch ist der Durchschnitt der Bewertungen fiir die Unterkiinfte, deren Name mit
“Clean” beginnt im Vergleich zu den anderen Unterklinften? Hinweis 1: Du kannst

z.B. .mean() direkt an einer (extrahierten) Series verwenden. Hinweis 2: Das Filtern von
Unterkiinften, deren Name mit “Clean” beginnt, wurde bereits oben im Text gezeigt.

Auf zwei Nachkommastellen gerundet haben Unterklinfte, deren Name

+ mit “Clean” beginnt ein durchschnittliches Rating von
+ nicht mit “Clean” beginnt ein durchschnittliches Rating von

Erzeuge zunachst den Teildatensatz df ex, indem du folgenden Code ausfiihrst:

pd.set option('display.max rows', 20)

16

16 /17

df ex
df ex

df[['neighbourhood’,

'number of reviews',

‘country code', 'host name'l]]

df ex[df ex['host name'].str.startswith('Mari', na=False)]

df ex = df _ex.head(20)
df ex

neighbourhood
489 Fort Greene
590 Chelsea
1073 Sunset Park
1187 Lower East Side
1302 East Village
1351 Upper East Side
1425 Tottenville
1470 Upper West Side
1508 Mariners Harbor
1517 East New York
1558 Concord
1570 Concord
1622 Arrochar
1680 Upper West Side
1684 East Harlem
1714 Harlem
1741 Williamsburg
1824 West Village
1864 Chelsea

1944 Greenwich Village

Sorge nun dafir, dass von df _ex nur die Zeilen gefiltert werden, in denen der Host
“Maria” heildt ohne aber die Spalte host name in deinem Code zu benutzen. Anders
ausgedrickt: Tu fur deine Vorgehensweise so als ware die Spalte mit der Bezeichnunge
host name nicht im Datensatz, filte aber dennoch so, dass nur die Zeilen gefiltert werden,

number of reviews country code

35.
32.
28.
57.
115.
12.
59.
108.
48.
13.
59.
36.
1.
9
24,
97.
121.
38.
2.
17.

in denen der Host “Maria” heil3t.

* (A) Geschafft

Erzeuge nun selbst basierend auf dem vollen Datensatz df einen Teildatensatz, welcher
(i) nur die Spalten NAME, neighbourhood und host name enthalt und (ii) nur die Zeilen, in
denen der Host “Peter” heildt. Entferne schlief3lich Duplikate so, dass pro Neighbourhood

nur eine Zeile Ubrig bleibt.

* Der resultierende Datensatz hat __ Zeilen. Demnach gibt es entsprechend viele

0

[clcloNoNoNoNoNoNoNoNoNoNoNoNoNoNoMNoMNol

us
us
us
us
us
us
us
us
us
us
us
us
us
us
us
us
us
us
us
us

host name
Maria

Maria

Maria Luiza
Mariana
Marianna
Marie-Jeanne
Marina
Mariko
Maria

Maria Daniela
Marianne
Marianne
Marina
Mariko
Mariko
Marie
Mariana
Marina
Marie

Mario

verschiedene Neighbourhoods mit mindestens einem Host names Peter.

17

) BioMath

17 /17

	Zeilen selektieren
	Zeilenindices bearbeiten

	Zeilen filtern
	Bedingung umkehren
	Mehrere Bedingungen
	& (und)
	| (oder)
	Klammern
	Die .isin() Methode
	Die .between() Methode
	String-Methoden

	Die .query() Methode
	Duplikate entfernen

	Zeilen sortieren
	Übungen

