
1 / 17

Zeilen filtern
by Woche 8

Wie in den vorigen Kapiteln setzen wir zunächst wieder Pandas Optionen und
importieren unseren AirBnB Datensatz.

import pandas as pd

pd.set_option('display.max_columns', 4)
pd.set_option('display.max_rows', 6)
pd.set_option('display.max_colwidth', 20)

csv_url = 'https://github.com/SchmidtPaul/ExampleData/raw/main/airbnb_open_
data/Airbnb_Open_Data.csv'
df = pd.read_csv(csv_url, dtype={25: str})

df

 id NAME ... house_rules license
0 1001254 Clean & quiet ap... ... Clean up and tre... NaN
1 1002102 Skylit Midtown C... ... Pet friendly but... NaN
2 1002403 THE VILLAGE OF H... ... I encourage you ... NaN
...
102596 6093542 Comfy, bright ro... ... NaN NaN
102597 6094094 Big Studio-One S... ... NaN NaN
102598 6094647 585 sf Luxury St... ... NaN NaN

[102599 rows x 26 columns]

In diesem Abschnitt konzentrieren wir uns auf das Auswählen von Zeilen. Zuvor sollten
wir jedoch die verwendeten Begriffe klären, insbesondere den Unterschied zwischen
“Zeilen filtern” und “Spalten selektieren”. Die Unterscheidung ist nicht immer eindeutig,
da man eigentlich auch Zeilen selektieren oder Spalten herausfiltern kann. Trotzdem hat
sich durch spezifische Funktionen in Programmiersprachen wie z.B. SQL (SELECT/FILTER)
oder R (select()/filter()) ein gewisser Zusammenhang zwischen den erstgenannten
Begriffspaaren etabliert. Die Begriffe lassen sich jedoch, wenn überhaupt, nur grob
voneinander abgrenzen: “filtern” impliziert in der Regel, dass eine Bedingung erfüllt sein
muss, während “selektieren” eher darauf hindeutet, dass eine explizite, bekannte
Auswahl getroffen wird. In der Praxis muss man Zeilen häufiger filtern und Spalten eher
selektieren.

1

2 / 17

Zeilen selektieren
Der Vollständigkeit halber wollen wir also zuerst doch kurz darauf eingehen, wie man
auch Zeilen einfach selektieren kann. Speziell in Python und Pandas ist dies nämlich
dem Spalten selektieren prinzipiell ähnlich, da die Indices von Zeilen in gewisser Weise
gehandhabt werden wie die Indices von Spalten. Für die direkte Vergleichbarkeit zum
vorangegangen Kapitel zur Spaltenselektion sind hier dieselben vier Stichpunkte analog
für Zeilen:

Für die ersten beiden Punkte gibt es in Pandas also keine direkte Entsprechung für
Zeilen. Ebenfalls gilt es wieder zu unterscheiden ob man beim Selektieren einer
einzelnen Zeile eine Series oder einen Dataframe mit einer Zeile erhält.

Eine Zeile als Series

df.loc[0]
df.iloc[0]

id 1001254
NAME Clean & quiet ap...
host id 80014485718
 ...
availability 365 286.0
house_rules Clean up and tre...
license NaN
Name: 0, Length: 26, dtype: object

Eine Zeile als DataFrame

df.loc[[0]]
df.iloc[[0]]

 id NAME ... house_rules license
0 1001254 Clean & quiet ap... ... Clean up and tre... NaN

[1 rows x 26 columns]

Mehrere Zeilen als DataFrame

df.loc[[0, 1]]
df.iloc[[0, 1]]

2

3 / 17

 id NAME ... house_rules license
0 1001254 Clean & quiet ap... ... Clean up and tre... NaN
1 1002102 Skylit Midtown C... ... Pet friendly but... NaN

[2 rows x 26 columns]

Was für etwas Verwirrung sorgen könnte ist die Tatsache, dass hier sowohl in .loc[] als
auch in .iloc[] die Zeilenindizes in eckigen Klammern stehen. Der Unterschied sollte ja
sein, dass .loc[] die Zeilen anhand ihres Namens auswählt, während .iloc[] die Zeilen
anhand ihres Index auswählt. Da wir standardmäßig und so eben auch hier aber keine
expliziten Zeilennamen haben, ist also der Zeilenname gleich dem Index und wir können
die beiden Methoden hier gleich verwenden.

Zeilenindices bearbeiten
Jetzt ist also ein guter Zeitpunkt um mal die Zeilenindices zu verändern und ihnen
tatsächlich Namen/Label zu geben. Das geht z.B. mit der Methode .set_index(). Hierbei
wird eine im Dataframe vorhandene Spalte als Index festgelegt, also zum Index
konvertiert, sodass die Zeilen dann anhand der Einträge in dieser Spalte ausgewählt
werden können. In unserem Fall bietet sich die Spalte id an, da diese eindeutig und
somit als Index geeignet ist. Die Spalte id wird also anstelle der Standard-Indices als
Index festgelegt und ist dann auch nicht mehr als “normale Spalte” im Dataframe.

df.set_index('id', inplace=True)
df

 NAME host id ... house_rules license
id ...
1001254 Clean & quiet ap... 80014485718 ... Clean up and tre... NaN
1002102 Skylit Midtown C... 52335172823 ... Pet friendly but... NaN
1002403 THE VILLAGE OF H... 78829239556 ... I encourage you ... NaN
...
6093542 Comfy, bright ro... 69050334417 ... NaN NaN
6094094 Big Studio-One S... 11160591270 ... NaN NaN
6094647 585 sf Luxury St... 68170633372 ... NaN NaN

[102599 rows x 25 columns]

Nun wäre die erste Zeile zwar weiterhin mit df.iloc[[0]], aber eben mit
df.loc[[1001254]] zu selektieren:

df.loc[[1001254]]

3

4 / 17

 NAME host id ... house_rules license
id ...
1001254 Clean & quiet ap... 80014485718 ... Clean up and tre... NaN

[1 rows x 25 columns]

Dabei kann der Index zum Einen auch ein String sein und zum Anderen mit index_col=
auch direkt beim Import festgelegt werden.

df = pd.read_csv(
 csv_url,
 dtype={25: str},
 index_col='NAME'
)

df

 id host id ... house_rules license
NAME ...
Clean & quiet apt... 1001254 80014485718 ... Clean up and tre... NaN
Skylit Midtown Ca... 1002102 52335172823 ... Pet friendly but... NaN
THE VILLAGE OF HA... 1002403 78829239556 ... I encourage you ... NaN
...
Comfy, bright roo... 6093542 69050334417 ... NaN NaN
Big Studio-One St... 6094094 11160591270 ... NaN NaN
585 sf Luxury Studio 6094647 68170633372 ... NaN NaN

[102599 rows x 25 columns]

df.loc[['Clean & quiet apt home by the park']]

 id host id ... house_rules license
NAME ...
Clean & quiet apt... 1001254 80014485718 ... Clean up and tre... NaN

[1 rows x 25 columns]

df.iloc[[0]] # alternativ weiterhin mit IndexNr

 id host id ... house_rules license
NAME ...
Clean & quiet apt... 1001254 80014485718 ... Clean up and tre... NaN

4

5 / 17

[1 rows x 25 columns]

Für den Moment setzen wir den Index mit .reset_index() wieder zurück, um uns nun
auf das Filtern zu konzentrieren.

df = df.reset_index()
df

 NAME id ... house_rules license
0 Clean & quiet ap... 1001254 ... Clean up and tre... NaN
1 Skylit Midtown C... 1002102 ... Pet friendly but... NaN
2 THE VILLAGE OF H... 1002403 ... I encourage you ... NaN
...
102596 Comfy, bright ro... 6093542 ... NaN NaN
102597 Big Studio-One S... 6094094 ... NaN NaN
102598 585 sf Luxury St... 6094647 ... NaN NaN

[102599 rows x 26 columns]

Zeilen filtern
Nun wollen wir uns dem eigentlichen Thema widmen: dem Filtern. Hierbei wird eine
Bedingung definiert, die für jede Zeile überprüft wird. Wenn die Bedingung erfüllt ist, wird
die Zeile beibehalten, ansonsten verworfen.

An dieser Stelle ist es sinnvoll, dass wir uns vorest einen übersichtlichen Teildatensatz
erzeugen um mit diesem zu arbeiten. Dazu selektieren wir folgende 6 Zeilen und 4
Spalten:

df2 = df.loc[0:5, ['room type', 'minimum nights', 'Construction year']]
df2

 room type minimum nights Construction year
0 Private room 10.0 2020.0
1 Entire home/apt 30.0 2007.0
2 Private room 3.0 2005.0
3 Entire home/apt 30.0 2005.0
4 Entire home/apt 10.0 2009.0
5 Entire home/apt 3.0 2013.0

Wie man prüft, also einen boolschen Wert True oder False erhält, haben wir schon früh
in Kapitel 2.2 Datentypen gelernt. So können wir prüfen ob eine Zahl z.B. gleich 2005 ist,
indem wir den == Operator verwenden. Praktischerweise, können wir mit Pandas auch
direkt eine ganze Spalte auf diese Weise prüfen. Es wird also nicht geprüft ob eine

5

6 / 17

bestimmte Spalte dasselbe ist wie 2005, sondern ob jede einzelne Zelle in der Spalte
gleich 2005 ist. Das Ergebnis ist dann entsprechend eine Spalte mit True und False
Werten.

x = 2005 # definiere x als 2005
x == 2005 # prüfe ob x gleich 2005

True

df2['Construction year'] == 2005

0 False
1 False
2 True
3 True
4 False
5 False
Name: Construction year, dtype: bool

Diese Spalte können wir dann übergeben und behalten nur die Zeilen, die True sind. Die
Daten wurden also entsprechend der Bedinung gefiltert. Dabei kann die Bedingung
entweder direkt übergeben oder vorher in einer Variable gespeichert werden. Letzteres
wird ggf. als übersichtlicher empfunden und ergibts spätestens dann Sinn, wenn die
Bedingung komplex ist und/oder mehrfach verwendet wird.

#
df2[df2['Construction year'] == 2005]

 room type minimum nights Construction year
2 Private room 3.0 2005.0
3 Entire home/apt 30.0 2005.0

gebaut_2005 = df2['Construction year'] == 2005
df2[gebaut_2005]

 room type minimum nights Construction year
2 Private room 3.0 2005.0
3 Entire home/apt 30.0 2005.0

6

7 / 17

Bedingung umkehren
Manchmal ist es nötig oder intuitiver eine Bedingung umzukehren. Dies kann mit dem ~
Operator erreicht werden. Dabei werden dann dementsprechend alle True Werte zu
False und umgekehrt.

gebaut_2005

0 False
1 False
2 True
3 True
4 False
5 False
Name: Construction year, dtype: bool

~gebaut_2005

0 True
1 True
2 False
3 False
4 True
5 True
Name: Construction year, dtype: bool

Mehrere Bedingungen
Mehrere Bedingungen können mit den logischen Operatoren & (und) und | (oder)
verknüpft werden. Dabei ist es wichtig, die Bedingungen in Klammern zu setzen, um die
Reihenfolge der Operationen zu steuern.

& (und)

Wollen wir beispielsweise alle Zeilen behalten, die den Zimmertyp Ganze Wohnung/
Haus haben und weniger als 15 Nächte Mindestaufenthalt aufweisen, so können wir
dies wie folgt umsetzen:

behalten = (df2['room type'] == 'Entire home/apt') & (df2['minimum nights'] <
15)
df2[behalten]

7

8 / 17

 room type minimum nights Construction year
4 Entire home/apt 10.0 2009.0
5 Entire home/apt 3.0 2013.0

| (oder)

Wollen wir stattdessen alle Zeilen behalten, die den Zimmertyp Privatzimmer oder
Baujahr 2005 haben, so können wir dies so umsetzen:

behalten = (df2['room type'] == 'Private room') | (df2['Construction year'] ==
2005)
df2[behalten]

 room type minimum nights Construction year
0 Private room 10.0 2020.0
2 Private room 3.0 2005.0
3 Entire home/apt 30.0 2005.0

Beachte, dass | in Python OR und nicht XOR bedeutet. XOR bedeutet, dass wirklich nur
eine der beiden Bedingungen erfüllt sein darf. In diesem Fall wäre die mittlere, gefilterte
Zeile dementsprechend nicht enthalten, da sie sowohl den Zimmertyp Privatzimmer als
auch das Baujahr 2005 hat. Der XOR Operator ist ^.

Klammern

Schließlich muss klar sein, dass die Klammern in der Bedingung nicht nur für die
Lesbarkeit, sondern auch für die korrekte Ausführung notwendig sind. Um dies zu
demonstrieren wollen wir folgende drei Bedingungen vorbereiten und sie dann mal in
verschiedenen Kombinationen ausführen, wobei die Operatoren & und | aber
uvnerändert bleiben:

bed1 = df2['Construction year'] > 2005
bed2 = df2['room type'] == 'Private room'
bed3 = df2['minimum nights'] > 15

df2[bed1 & bed2 | bed3]

 room type minimum nights Construction year
0 Private room 10.0 2020.0

8

https://de.wikipedia.org/wiki/Exklusiv-Oder-Gatter#:~:text=Ein%20Exklusiv%2DOder%2DGatter%2C,an%20dem%20anderen%20%E2%80%9E0%E2%80%9C.

9 / 17

1 Entire home/apt 30.0 2007.0
3 Entire home/apt 30.0 2005.0

df2[bed1 & (bed2 | bed3)]

 room type minimum nights Construction year
0 Private room 10.0 2020.0
1 Entire home/apt 30.0 2007.0

Es zeigt sich, dass die unterschiedliche Setzung von Klammern auch zu unterschiedlich
gefilterten Ergebnissen führen. Ohne Klammern wird zuerst bed1 & bed2 berechnet und
dann mit bed3 verknüpft. Mit Klammern wird zuerst bed2 | bed3 berechnet und dann mit
bed1 verknüpft.

Die .isin() Methode

Eine weitere Möglichkeit, mehrere Bedingungen zu verknüpfen, ist die .isin() Methode.
Diese Methode prüft, ob ein Wert in einer Liste von Werten enthalten ist. Sie prüft also in
gewisser Hinsicht mehrere Bedingungen gleichzeitig. Hier der Vergleich um mit und
ohne .isin() zu filtern ob das Baujahr 2020, 2009 oder 2005 ist:

ist_2020 = df2['Construction year'] == 2020
ist_2009 = df2['Construction year'] == 2009
ist_2005 = df2['Construction year'] == 2005

df2[ist_2020 | ist_2009 | ist_2005]

 room type minimum nights Construction year
0 Private room 10.0 2020.0
2 Private room 3.0 2005.0
3 Entire home/apt 30.0 2005.0
4 Entire home/apt 10.0 2009.0

ok_jahre = [2020, 2009, 2005]
ist_ok = df2['Construction year'].isin(ok_jahre)

df2[ist_ok]

 room type minimum nights Construction year
0 Private room 10.0 2020.0

9

10 / 17

2 Private room 3.0 2005.0
3 Entire home/apt 30.0 2005.0
4 Entire home/apt 10.0 2009.0

Die .between() Methode

Die .between() Methode ist eine weitere Möglichkeit, um Bedingungen zu formulieren.
Sie prüft, ob ein Wert zwischen zwei anderen Werten liegt. Hier der Vergleich um mit
und ohne .between() zu filtern ob das Baujahr zwischen 2006 und 2015 liegt:

ist_nach_2008 = df2['Construction year'] > 2006
ist_vor_2015 = df2['Construction year'] < 2015

df2[ist_nach_2008 & ist_vor_2015]

 room type minimum nights Construction year
1 Entire home/apt 30.0 2007.0
4 Entire home/apt 10.0 2009.0
5 Entire home/apt 3.0 2013.0

zwi = df2['Construction year'].between(2006, 2015)

df2[zwi]

 room type minimum nights Construction year
1 Entire home/apt 30.0 2007.0
4 Entire home/apt 10.0 2009.0
5 Entire home/apt 3.0 2013.0

String-Methoden

Wie schon im letzten Kapitel zur Selektion von Spalten anhand ihres Namens, können
natürlich auch hier beim Filtern String-Methoden
wie .str.contains(), .str.startswith(), .str.endswith() zum Filtern von Text/String-
Spalten eingesetzt werden. Als Beispiel könnten wir wie folgt feststellen, dass 800
unserer >100,000 Bezeichnung von AirBnB Unterkünften mit “Clean” beginnen:

beginnt_mit_Clean = df['NAME'].str.startswith('Clean', na=False)
df[beginnt_mit_Clean]

10

11 / 17

 NAME id ... house_rules license
0 Clean & quiet ap... 1001254 ... Clean up and tre... NaN
37 Clean and Quiet ... 1021771 ... NO Shoes in the ... NaN
180 Clean and Cozy H... 1100750 ... We live on the p... NaN
...
102384 Clean cozy overn... 20361660 ... We have a no sho... NaN
102468 Clean, Cozy Home... 20408053 ... All guests are e... NaN
102564 Clean & Cozy- Pr... 6075868 ... NaN NaN

[800 rows x 26 columns]

 na=False

Wie schon im letzten Kapitel erwähnt, gehen wir auf Fehlwerte erst in einem
folgenden Kapitel ein. Dennoch muss in der obigen Funktion .str.startswith() der
Parameter na=False gesetzt werden, um Fehlwerte zu ignorieren. Ohne dieses
Argument würde die Funktion standardmäßig einen Fehler werfen, da in der Spalte
NAME Fehlwerte enthalten sind und diese nich ohne weiteres verarbeitet werden.

Die .query() Methode
Man kann auch alternativ die .query() Methode zum Filtern von Zeilen verwenden. In
diese Methode können wir prinzipiell dieselben Bedingungen schreiben wie in den
vorherigen Beispielen, allerdings als String mit leicht abgeänderter Syntax. Hier eine
direkt Gegenüberstellung:

df[df['NAME'] == 'Great Location for NYC']

 NAME id ... house_rules license
89 Great Location f... 1050491 ... I just ask that ... NaN

[1 rows x 26 columns]

df.query('NAME == "Great Location for NYC"')

 NAME id ... house_rules license
89 Great Location f... 1050491 ... I just ask that ... NaN

[1 rows x 26 columns]

Allerdings müssten Spaltennamen, die Leerzeichen enthalten, in der .query() Methode
in diese ` Anführungszeichen gesetzt werden.

11

12 / 17

df2[df2['Construction year'] == 2005]

 room type minimum nights Construction year
2 Private room 3.0 2005.0
3 Entire home/apt 30.0 2005.0

df2.query('`Construction year` == 2005')

 room type minimum nights Construction year
2 Private room 3.0 2005.0
3 Entire home/apt 30.0 2005.0

Die .query() Methode ist also schlichtweg eine alternative Schreibweise, die in manchen
Fällen übersichtlicher sein kann. Darüber hinaus kann die .query() Methode in
bestimmten Fällen schneller als die herkömmliche Methode sein.

Duplikate entfernen
Zuletzt wollen wir noch auf das Entfernen von Duplikaten eingehen, das letztendlich
auch eine Form des Filterns ist. Hierbei wird jede Zeile mit einer anderen Zeile
verglichen und entfernt, wenn sie identisch ist. Die Methode .duplicated() gibt eine
Spalte mit True und False Werten zurück, die angibt, ob eine Zeile bereits vorher
vorkam. Erzeugen wir uns zunächst einen noch kleineren Teildatensatz df3, in welchem
identische Zeilen, also Duplikate vorliegen:

df3 = df2[['room type', 'minimum nights']]
df3

 room type minimum nights
0 Private room 10.0
1 Entire home/apt 30.0
2 Private room 3.0
3 Entire home/apt 30.0
4 Entire home/apt 10.0
5 Entire home/apt 3.0

#
df3.duplicated()

0 False
1 False

12

13 / 17

2 False
3 True
4 False
5 False
dtype: bool

Es wird also nur die erste auftretende Zeile als nicht dupliziert betrachtet. Die
Kombination aus room type Entire home/apt und minimum nights 30.0 taucht also in der
zweiten Zeile erstmals auf und ist dort somit nicht als Duplikat markiert. In der vierten
Zeile taucht sie dann aber erneut auf und ist somit als Duplikat markiert. Um Duplikate
zu entfernen könnten wir nun die durch .duplicated() erzeugte Series verwenden und
sie mittels ~ umkehren. Allerdings gibt es auch die noch einfachere
Variante .drop_duplicates(), die direkt die Duplikate entfernt:

df3[~df3.duplicated()]

 room type minimum nights
0 Private room 10.0
1 Entire home/apt 30.0
2 Private room 3.0
4 Entire home/apt 10.0
5 Entire home/apt 3.0

df3.drop_duplicates()

 room type minimum nights
0 Private room 10.0
1 Entire home/apt 30.0
2 Private room 3.0
4 Entire home/apt 10.0
5 Entire home/apt 3.0

Schließlich soll noch erwähnt sein, dass die Methode .drop_duplicates() auch die
Möglichkeit bietet, bei der Einstufung was ein Duplikat ist, nur einige der vorhandenen
Spalten zu berücksichten. Dazu wird der Parameter subset= verwendet, der eine Liste
von Spaltennamen erwartet. Wir könnten also hier zur selben Aussortierung von
Duplikaten wie soeben mit df3 kommen, auch wenn df2 zugrundeliegt. Dessen
zusätzliche Spalte Construction year würde eigentlich dafür sorgen, dass die zweite und
vierte Zeile nicht als Duplikate betrachtet werden, da sie ja unterschiedliche Baujahre
vorweisen. Da wir diese Spalte aber nicht in die Überprüfung einbeziehen, werden sie
dennoch als Duplikate betrachtet und entfernt:

13

14 / 17

df2.drop_duplicates()

 room type minimum nights Construction year
0 Private room 10.0 2020.0
1 Entire home/apt 30.0 2007.0
2 Private room 3.0 2005.0
3 Entire home/apt 30.0 2005.0
4 Entire home/apt 10.0 2009.0
5 Entire home/apt 3.0 2013.0

df2.drop_duplicates(subset=['room type', 'minimum nights'])

 room type minimum nights Construction year
0 Private room 10.0 2020.0
1 Entire home/apt 30.0 2007.0
2 Private room 3.0 2005.0
4 Entire home/apt 10.0 2009.0
5 Entire home/apt 3.0 2013.0

Zeilen sortieren
Zum Abschluss wollen wir noch kurz auf das Sortieren von Zeilen eingehen. Dies kann
mit der Methode .sort_values() erreicht werden. Diese Methode erwartet den Namen
der Spalte, nach der sortiert werden soll. Mit dem Parameter ascending= kann die
Sortierreihenfolge festgelegt werden, wobei es standardmäßig auf True gesetzt ist,
sodass die Werte von oben nach unten aufsteigen. Hier ein Beispiel, wie wir den
Teildatensatz df2 nach der Spalte minimum nights sortieren:

df2.sort_values('minimum nights')

 room type minimum nights Construction year
2 Private room 3.0 2005.0
5 Entire home/apt 3.0 2013.0
4 Entire home/apt 10.0 2009.0
0 Private room 10.0 2020.0
3 Entire home/apt 30.0 2005.0
1 Entire home/apt 30.0 2007.0

df2.sort_values('minimum nights', ascending=False)

14

15 / 17

 room type minimum nights Construction year
1 Entire home/apt 30.0 2007.0
3 Entire home/apt 30.0 2005.0
0 Private room 10.0 2020.0
4 Entire home/apt 10.0 2009.0
2 Private room 3.0 2005.0
5 Entire home/apt 3.0 2013.0

Natürlich kann auch nach mehreren Spalten sortiert werden, indem eine Liste von
Spaltennamen übergeben wird. Die Sortierreihenfolge wird dabei von links nach rechts
festgelegt. Hier ein Beispiel, wie wir den Teildatensatz df2 zuerst nach room type
(aufsteigend, alphabetisch) und dann (also innerhalb desselben room types) nach
minimum nights (absteigend) sortieren:

df2.sort_values(
 by=['room type', 'minimum nights'],
 ascending=[True, False]
)

 room type minimum nights Construction year
1 Entire home/apt 30.0 2007.0
3 Entire home/apt 30.0 2005.0
4 Entire home/apt 10.0 2009.0
5 Entire home/apt 3.0 2013.0
0 Private room 10.0 2020.0
2 Private room 3.0 2005.0

Es gibt auch eine analoge Methode .sort_index(), die den Index des Dataframes
sortiert. Auch hier kann der Parameter ascending= verwendet werden.

Thematisch passend ist auch die Funktion .rank(), die die Ränge der Zeilen bestimmt.
Das heißt, dass die Daten nicht sortiert zurückgegeben werden, sondern die Ränge der
Zeilen in der ursprünglichen Reihenfolge. Hier ein Beispiel, wie wir den Teildatensatz df2
nach der Spalte Construction year ranken. Wann immer es ein Unentschieden gibt, wird
der Durchschnittsrang vergeben. Man kann aber auch .astype(int) anhängen, um die
Ränge in Ganzzahlen zu konvertieren.

Hinweis: Wir erzeugen hier eine neue Spalte rank, die die Ränge enthält. Eigentlich
behandeln wir das erzeugen und bearbeiten von Spalten aber erst im nächsten Kapitel.

df5 = df2[['Construction year']]
df5['rank'] = df5['Construction year'].rank()
df5

15

16 / 17

 Construction year rank
0 2020.0 6.0
1 2007.0 3.0
2 2005.0 1.5
3 2005.0 1.5
4 2009.0 4.0
5 2013.0 5.0

df5 = df2[['Construction year']]
df5['rank'] = df5['Construction year'].rank().astype(int)
df5

 Construction year rank
0 2020.0 6
1 2007.0 3
2 2005.0 1
3 2005.0 1
4 2009.0 4
5 2013.0 5

Übungen
In einem vorangegangenen Kapitel wurden bereits die Hilfsfunktionen .head()
und .tail() vorgestellt, die die ersten bzw. letzten Zeilen eines Dataframes ausgeben.
Wie könnte man mit .iloc[] zum selben Ergebnis kommen?

• df.head() entspricht df.iloc[___]
• df.tail() entspricht df.iloc[___]

Die Spalte review rate number enthält die durchschnittliche Bewertung einer Unterkunft.
Wie hoch ist der Durchschnitt der Bewertungen für die Unterkünfte, deren Name mit
“Clean” beginnt im Vergleich zu den anderen Unterkünften? Hinweis 1: Du kannst
z.B. .mean() direkt an einer (extrahierten) Series verwenden. Hinweis 2: Das Filtern von
Unterkünften, deren Name mit “Clean” beginnt, wurde bereits oben im Text gezeigt.

Auf zwei Nachkommastellen gerundet haben Unterkünfte, deren Name

• mit “Clean” beginnt ein durchschnittliches Rating von ____
• nicht mit “Clean” beginnt ein durchschnittliches Rating von ____

Erzeuge zunächst den Teildatensatz df_ex, indem du folgenden Code ausführst:

pd.set_option('display.max_rows', 20)

16

17 / 17

df_ex = df[['neighbourhood', 'number of reviews', 'country code','host name']]
df_ex = df_ex[df_ex['host name'].str.startswith('Mari', na=False)]
df_ex = df_ex.head(20)
df_ex

 neighbourhood number of reviews country code host name
489 Fort Greene 35.0 US Maria
590 Chelsea 32.0 US Maria
1073 Sunset Park 28.0 US Maria Luiza
1187 Lower East Side 57.0 US Mariana
1302 East Village 115.0 US Marianna
1351 Upper East Side 12.0 US Marie-Jeanne
1425 Tottenville 59.0 US Marina
1470 Upper West Side 108.0 US Mariko
1508 Mariners Harbor 48.0 US Maria
1517 East New York 13.0 US Maria Daniela
1558 Concord 59.0 US Marianne
1570 Concord 36.0 US Marianne
1622 Arrochar 1.0 US Marina
1680 Upper West Side 9.0 US Mariko
1684 East Harlem 24.0 US Mariko
1714 Harlem 97.0 US Marie
1741 Williamsburg 121.0 US Mariana
1824 West Village 38.0 US Marina
1864 Chelsea 2.0 US Marie
1944 Greenwich Village 17.0 US Mario

Sorge nun dafür, dass von df_ex nur die Zeilen gefiltert werden, in denen der Host
“Maria” heißt ohne aber die Spalte host name in deinem Code zu benutzen. Anders
ausgedrückt: Tu für deine Vorgehensweise so als wäre die Spalte mit der Bezeichnunge
host name nicht im Datensatz, filte aber dennoch so, dass nur die Zeilen gefiltert werden,
in denen der Host “Maria” heißt.

• (A) Geschafft

Erzeuge nun selbst basierend auf dem vollen Datensatz df einen Teildatensatz, welcher
(i) nur die Spalten NAME, neighbourhood und host name enthält und (ii) nur die Zeilen, in
denen der Host “Peter” heißt. Entferne schließlich Duplikate so, dass pro Neighbourhood
nur eine Zeile übrig bleibt.

• Der resultierende Datensatz hat __ Zeilen. Demnach gibt es entsprechend viele
verschiedene Neighbourhoods mit mindestens einem Host names Peter.

17

	Zeilen selektieren
	Zeilenindices bearbeiten

	Zeilen filtern
	Bedingung umkehren
	Mehrere Bedingungen
	& (und)
	| (oder)
	Klammern
	Die .isin() Methode
	Die .between() Methode
	String-Methoden

	Die .query() Methode
	Duplikate entfernen

	Zeilen sortieren
	Übungen

