
1 / 14

Spalten selektieren
by Woche 8

Wie im vorigen Kapitel setzen wir zunächst wieder Pandas Optionen und importieren
unseren AirBnB Datensatz.

import pandas as pd

pd.set_option('display.max_columns', 4)
pd.set_option('display.max_rows', 6)
pd.set_option('display.max_colwidth', 24)

csv_url = 'https://github.com/SchmidtPaul/ExampleData/raw/main/airbnb_open_
data/Airbnb_Open_Data.csv'
df = pd.read_csv(csv_url, dtype={25: str})

df

 id NAME ... house_rules license
0 1001254 Clean & quiet apt ho... ... Clean up and treat t... NaN
1 1002102 Skylit Midtown Castle ... Pet friendly but ple... NaN
2 1002403 THE VILLAGE OF HARLE... ... I encourage you to u... NaN
...
102596 6093542 Comfy, bright room i... ... NaN NaN
102597 6094094 Big Studio-One Stop NaN NaN
102598 6094647 585 sf Luxury Studio ... NaN NaN

[102599 rows x 26 columns]

Spalten selektieren/sortieren
selektieren
Spalten selektieren bedeutet, dass man nur bestimmte Spalten behält und die anderen
verwirft. Wir wissen bereits aus “5.2 Series & DataFrames”, dass wir eine oder mehrere
Spalten selektieren können, indem wir

• Den Spaltennamen mit Punkt an den DataFrame hängen
• Den Spaltennamen oder eine Liste von Spaltennamen in eckigen Klammern an den

DataFrame hängen
• Den Spaltennamen oder eine Liste von Spaltennamen hinter das Komma in .loc[:,]

schreiben

1

2 / 14

• Den Spaltenindex oder eine Liste von Spaltenindizes hinter das Komma in .iloc[:,]
schreiben

Dabei gibt es eine Besonderheit beim selektieren einer einzelnen Spalte: Während
sowohl df.price als auch df['price'] eine Series zurückgeben, gibt df[['price']] eine
DataFrame mit nur einer Spalte/Series zurück. Das ist ein kleiner, aber feiner
Unterschied, der für die weiteren Schritte wichtig sein kann.

In den folgenden Code-Beispielen sind die alternativen Befehle, die zum selben
Ergebnis führen einfach untereinander geschrieben.

Eine Spalte als Series

df.price
df['price']
df.loc[:, 'price']
df.iloc[:, 15]

0 $966
1 $142
2 $620
 ...
102596 $988
102597 $546
102598 $1,032
Name: price, Length: 102599, dtype: object

Eine Spalte als DataFrame

#
df[['price']]
df.loc[:, ['price']]
df.iloc[:, [15]]

 price
0 $966
1 $142
2 $620
... ...
102596 $988
102597 $546
102598 $1,032

[102599 rows x 1 columns]

Mehrere Spalten als DataFrame

2

3 / 14

#
df[['price', 'room type']]
df.loc[:, ['price', 'room type']]
df.iloc[:, [15, 13]]

 price room type
0 $966 Private room
1 $142 Entire home/apt
2 $620 Private room
...
102596 $988 Private room
102597 $546 Entire home/apt
102598 $1,032 Entire home/apt

[102599 rows x 2 columns]

sortieren
Gleichermaßen können wir auch die Spalten gleichzeitig selektieren und ihre
Reihenfolge ändern, indem wir die Spalten direkt in der gewünschten Reihenfolge in die
eckigen Klammern schreiben.

neuer_df = df[['room type', 'price']]
neuer_df = df.loc[:, ['room type', 'price']]
neuer_df = df.iloc[:, [17, 15]]

neuer_df

 minimum nights price
0 10.0 $966
1 30.0 $142
2 3.0 $620
...
102596 3.0 $988
102597 2.0 $546
102598 1.0 $1,032

[102599 rows x 2 columns]

Wollen wir allerdings nur die Reihenfolge einiger Spalten ändern und die nicht-
betroffenen Spalten trotzdem beibehalten, so müssen wir trotzdem alle Spalten in der
gewünschten Reihenfolge explizit angeben. Das müssen wir aber nicht manuell tun,
sondern können uns die Spaltennamen mit df.columns holen und dann z.B. mithilfe von
List Comprehension die neue Reihenfolge als Liste speichern. Als Beispiel möchten wir
die Spalten room type und price an den Anfange der Tabelle setzen, wobei alle anderen

3

4 / 14

Spalten dahinter so bleiben wie sie sind. Der Befehl df.columns gibt uns alle
Spaltennamen als Liste zurück:

df.columns

Index(['id', 'NAME', 'host id', 'host_identity_verified', 'host name',
 'neighbourhood group', 'neighbourhood', 'lat', 'long', 'country',
 'country code', 'instant_bookable', 'cancellation_policy', 'room type',
 'Construction year', 'price', 'service fee', 'minimum nights',
 'number of reviews', 'last review', 'reviews per month',
 'review rate number', 'calculated host listings count',
 'availability 365', 'house_rules', 'license'],
 dtype='object')

Das können wir uns zu Nutze machen, indem wir eine Liste erste_spalten erstellen, die
die gewünschten Spaltennamen enthält und dann die restlichen Spaltennamen in einer
Liste restliche_spalten speichern. Letzteres können wir mit List Comprehension (siehe
2.5 If-Else & Loops) erreichen, indem wir alle Spaltennamen durchgehen und nur
diejenigen behalten, die nicht in erste_spalten enthalten sind. Schließlich fügen wir
beides zu einer gemeinsamen Liste neue_spaltenreihenfolge zusammen, die wir dann
übergeben können.

erste_spalten = ['room type', 'price']
restliche_spalten = [spalte for spalte in df.columns if spalte not in
erste_spalten]
neue_spaltenreihenfolge = erste_spalten + restliche_spalten

neuer_df = df[neue_spaltenreihenfolge]
neuer_df = df.loc[:,neue_spaltenreihenfolge]
iloc Alternative hier nicht gezeigt

neuer_df

 room type price ... house_rules license
0 Private room $966 ... Clean up and treat t... NaN
1 Entire home/apt $142 ... Pet friendly but ple... NaN
2 Private room $620 ... I encourage you to u... NaN
...
102596 Private room $988 ... NaN NaN
102597 Entire home/apt $546 ... NaN NaN
102598 Entire home/apt $1,032 ... NaN NaN

[102599 rows x 26 columns]

4

5 / 14

selektiere von:bis
Manchmal möchte man auch von einer bestimmten Spalte bis zu einer anderen Spalte
selektieren. Das können wir z.B. durch slicing erreichen, indem einfach die zwei
Spaltennamen durch einen Doppelpunkt getrennt angeben.

df.loc[:, 'room type':'price']

 room type Construction year price
0 Private room 2020.0 $966
1 Entire home/apt 2007.0 $142
2 Private room 2005.0 $620
...
102596 Private room 2009.0 $988
102597 Entire home/apt 2015.0 $546
102598 Entire home/apt 2010.0 $1,032

[102599 rows x 3 columns]

Wollen wir allerdings zusätzlich z.B. noch eine weitere Spalte wie id selektieren, so geht
das nicht einfach indem wir beispielsweise schreiben df.loc[:, ['id', 'room
type':'price']]'. Leider erlaubt Pandas diese Kombination aus expliziten
Spaltennamen und einem Slice nicht. Stattdessen könnten wir etwas umständlich (aber
dennoch womöglich besser als ganz manuell) die Spaltennamen aus separaten
Schritten kombinieren.

cols = df.loc[:, 'room type':'price'].columns
cols = ['id'] + list(cols)

df.loc[:, cols]

 id room type Construction year price
0 1001254 Private room 2020.0 $966
1 1002102 Entire home/apt 2007.0 $142
2 1002403 Private room 2005.0 $620
...
102596 6093542 Private room 2009.0 $988
102597 6094094 Entire home/apt 2015.0 $546
102598 6094647 Entire home/apt 2010.0 $1,032

[102599 rows x 4 columns]

Möchten wir eine oder mehrere Spalten löschen, so können wir das mit dem Befehl
drop() tun. Dabei müssen wir angeben, welche Spalten gelöscht werden sollen und ob
es sich dabei um Zeilen oder Spalten handelt. Letzteres können wir mit dem Argument

5

6 / 14

axis tun, wobei axis = 0 für Zeilen¹ und axis = 1 für Spalten steht. Alternativ kann man
die zu löschenden Spalten auch dem Argument columns= übergeben - dann wird axis
automatisch auf 1 gesetzt.

neuer_df = df.loc[:, 'room type':'price']
neuer_df.drop('room type', axis = 1)

 Construction year price
0 2020.0 $966
1 2007.0 $142
2 2005.0 $620
...
102596 2009.0 $988
102597 2015.0 $546
102598 2010.0 $1,032

[102599 rows x 2 columns]

neuer_df = df.loc[:, 'room type':'price']
neuer_df.drop(columns = ['room type', 'price'])

 Construction year
0 2020.0
1 2007.0
2 2005.0
... ...
102596 2009.0
102597 2015.0
102598 2010.0

[102599 rows x 1 columns]

anhand von Spalteneigenschaften
Ebenso muss man manchmal Spalten selektieren/löschen, die bestimmte Eigenschaften
haben. Das können z.B. Spalten sein,

• die einen bestimmten Datentyp haben
• deren Spaltenname mit einem bestimmten Buchstaben beginnt oder endet o.ä.
• die nur fehlende Werte enthalten
• die nur einen einzigen Wert enthalten

¹Prinzipiell kann man mit drop() auch Zeilen löschen und deren Indices könnten ja ebenfalls als
Strings wie room type usw. definiert worden sein. Deshalb ist es wichtig, explizit anzugeben, dass es
sich um Spalten handelt, indem wir axis = 1 setzen.

6

7 / 14

All diese Fälle haben gemeinsam, dass wir erst eine entsprechende Liste von
Spaltennamen erstellen könnten und dann diese Liste mit den oben gelerente Befehlen
verwenden können. Es gibt aber auch spezielle Funktionen, die uns das Leben
erleichtern. Hier werden wir uns ein paar davon anschauen.

Datentyp

Möchten wir z.B. alle Spalten selektieren, die den Datentyp float64 haben, so könnte
man erst alle Spaltennamen mit dem entsprechenden Datentyp herausfinden und dann
diese Spalten selektieren. Wir tun das hier wie folgt: df.dtypes gibt uns eine Series
zurück, die die Datentypen aller Spalten enthält, wobei die Spaltennamen in dieser
Series im Index stehen. Mit df.dtypes == 'float64' erhalten wir eine Series mit True
und False Werten, die angibt, ob der Datentyp der Spalte float64 ist. Mit
df.dtypes[df.dtypes == 'float64'] erhalten wir schließlich nur die Spaltennamen, die
dabei ein True haben. Von dieser Series können wir dann die Indices (also die
Spaltennamen) extrahieren und diese dann zum Selektieren verwenden.

cols = df.dtypes[df.dtypes == 'float64'].index
df[cols]

 lat long ... calculated host listings count \
0 40.64749 -73.97237 ... 6.0
1 40.75362 -73.98377 ... 2.0
2 40.80902 -73.94190 ... 1.0
...
102596 40.67505 -73.98045 ... 1.0
102597 40.74989 -73.93777 ... 1.0
102598 40.76807 -73.98342 ... 1.0

 availability 365
0 286.0
1 228.0
2 352.0
... ...
102596 342.0
102597 386.0
102598 69.0

[102599 rows x 9 columns]

Für speziell solche Fälle gibt es eine Hilfsfunktion names select_dtypes(), mit der wir
direkt die Spalten selektieren, die einen bestimmten Datentyp haben. Dabei können wir
auch mehrere Datentypen angeben, indem wir sie in einer Liste übergeben und
außerdem zwischen include= und exclude= wählen. Da es in unserem Datensatz nur die

7

8 / 14

Datentypen int64, float64 und object gibt, können wir also wie folgt jeweils nur die
Spalten des Ganzzahlen-Typs behalten.

df.select_dtypes(include = 'int64')

 id host id
0 1001254 80014485718
1 1002102 52335172823
2 1002403 78829239556
...
102596 6093542 69050334417
102597 6094094 11160591270
102598 6094647 68170633372

[102599 rows x 2 columns]

df.select_dtypes(exclude = ['float64', 'object'])

 id host id
0 1001254 80014485718
1 1002102 52335172823
2 1002403 78829239556
...
102596 6093542 69050334417
102597 6094094 11160591270
102598 6094647 68170633372

[102599 rows x 2 columns]

Spaltenname

Möchten wir z.B. alle Spalten selektieren, die den String id enthalten, so könnten wir das
wie folgt tun: df.columns.str.contains('id') gibt uns eine Series zurück, die True und
False Werte enthält, je nachdem ob der Spaltenname den String id enthält oder nicht.
Mit df.columns[df.columns.str.contains('id')] erhalten wir schließlich nur die
Spaltennamen, die dabei ein True haben. Von dieser Series können wir dann die Indices
(also die Spaltennamen) extrahieren und diese dann zum Selektieren verwenden.

cols = df.columns[df.columns.str.contains('id')]
df[cols]

8

9 / 14

 id host id host_identity_verified
0 1001254 80014485718 unconfirmed
1 1002102 52335172823 verified
2 1002403 78829239556 NaN
...
102596 6093542 69050334417 unconfirmed
102597 6094094 11160591270 unconfirmed
102598 6094647 68170633372 unconfirmed

[102599 rows x 3 columns]

Für solche Fälle gibt es wiederum eine Hilfsfunktion names filter(), mit der wir direkt
die Spalten selektieren, die einen bestimmten String enthalten. Mit dem Argument like=
können wir dabei den String angeben, den die Spalten enthalten sollen.

df.filter(like = 'id')

 id host id host_identity_verified
0 1001254 80014485718 unconfirmed
1 1002102 52335172823 verified
2 1002403 78829239556 NaN
...
102596 6093542 69050334417 unconfirmed
102597 6094094 11160591270 unconfirmed
102598 6094647 68170633372 unconfirmed

[102599 rows x 3 columns]

Neben like= kann in der filter() Funktion auch regex= verwendet werden, um die
Spaltennamen anhand eines regulären Ausdrucks (siehe Ende 5.4 Strings & Method
Chaining) zu filtern. Beispielsweise könnten wir so auch alle Spalten behalten, die mit
review beginnen oder mit id enden.

^ steht in regex für den String-Anfang
df.filter(regex = '^review')

 reviews per month review rate number
0 0.21 4.0
1 0.38 4.0
2 NaN 5.0
...
102596 NaN 5.0
102597 0.10 3.0
102598 NaN 3.0

9

10 / 14

[102599 rows x 2 columns]

$ steht in regex für das String-Ende
df.filter(regex = 'id$')

 id host id
0 1001254 80014485718
1 1002102 52335172823
2 1002403 78829239556
...
102596 6093542 69050334417
102597 6094094 11160591270
102598 6094647 68170633372

[102599 rows x 2 columns]

Übrigens hat die filter() Funktion auch ein axis= Argument, kann also prinzipiell wie
schon drop() auch auf Zeilen angewendet werden. Der Default ist aber, dass es sich um
Spalten handelt, sodass wir das axis=1 nicht explizit angeben müssen.

Nur ein Wert

Manchmal erhält man große, unübersichtliche Datensätze, die viele Spalten enthalten.
Es kann dann nützlich sein all die Spalten zu löschen, die nur einen einzigen Wert
enthalten, da diese für die Analyse ggf. keinen relevanten Mehrwert mitbringen.

Wir können das z.B. mit der Funktion nunique() tun, die uns die Anzahl der einzigartigen
Werte je Spalte zurückgibt. df.nunique() == 1 gibt uns eine Series zurück, die True und
False Werte enthält, je nachdem ob die Spalte nur einen einzigen Wert enthält oder
nicht. Mit df.columns[df.nunique() == 1] erhalten wir schließlich nur die Spaltennamen,
die dabei ein True haben. Von dieser Series können wir dann die Indices (also die
Spaltennamen) extrahieren und diese dann zum Selektieren verwenden.

cols = df.columns[df.nunique() == 1]
df[cols] # bzw. df.drop(cols, axis = 1)

 country country code license
0 United States US NaN
1 United States US NaN
2 United States US NaN
...

10

11 / 14

102596 United States US NaN
102597 United States US NaN
102598 United States US NaN

[102599 rows x 3 columns]

Fehlende Werte

 Fehlwerte

Fehlwerte werden in einem späteren Kapitel ausführlicher behandelt. Hier ist es
zunächst wichtig zu wissen, dass fehlende Werte oder Daten in Python nicht nur mit
None markiert werden, sondern in Pandas auch mit NA², was für “not available” steht.
In Pandas gibe die Funktionen isna() und notna() gibt, die uns True und False
zurückgeben, je nachdem ob Werte fehlen oder vorhanden sind.

Möchten wir z.B. alle Spalten löschen, die ausschließlich Fehlwerte (also keine Werte)
enthalten, so könnten wir das wie folgt tun: df.isna().all() gibt uns eine Series zurück,
die True und False Werte enthält, je nachdem ob die Spalte nur fehlende Werte enthält
oder nicht. Mit df.columns[df.isna().all()] erhalten wir schließlich nur die
Spaltennamen, die dabei ein True haben. Von dieser Series können wir dann die Indices
(also die Spaltennamen) extrahieren und diese dann zum Löschen verwenden.

Leider hat unser Beispieldatensatz keine Spalten, die nur fehlende Werte enthalten,
sodass wir uns hier kurz einen neuen Datensatz erstellen.

df2 = pd.DataFrame({
 'a': [1, 2, 3],
 'b': [4, 5, pd.NA],
 'c': [None, None, None],
 'd': [pd.NA, pd.NA, pd.NA]
 })

df2

 a b c d
0 1 4 None <NA>
1 2 5 None <NA>
2 3 <NA> None <NA>

²oder NaN oder NaT

11

12 / 14

df2.isna()
df2.isna().all()

 a b c d
0 False False True True
1 False False True True
2 False True True True

a False
b False
c True
d True
dtype: bool

cols = df2.columns[df2.isna().all()]
df2.drop(cols, axis = 1)

 a b
0 1 4
1 2 5
2 3 <NA>

Es gibt aber auch hier wieder eine Hilfsfunktion namens dropna(), mit der wir direkt die
Spalten löschen können, die nur fehlende Werte enthalten. Mit dem Argument how=
können wir dabei angeben, ob wir die Spalten löschen wollen, die entweder nur fehlende
Werte enthalten (all) oder mindestens einen fehlenden Wert enthalten (any).

df2.dropna(axis = 1, how = 'all')

 a b
0 1 4
1 2 5
2 3 <NA>

Übungen
Für unseren AirBnB Datensatz können wir die Anzahl einzigartiger Werte pro Spalte wie
folgt in einem Balkendiagramm darstellen. Das Balkendiagramm ist in diesem Fall
horizontal, da wir .barh() anstelle von .bar() verwenden.

import pandas as pd
import matplotlib.pyplot as plt

df von oben verwenden

unique_counts = df.nunique()

12

13 / 14

plt.figure()
plt.barh(y = unique_counts.index, width = unique_counts.values)
plt.ylabel('Spalten')
plt.xlabel('Anzahl einzigartiger Werte')
plt.subplots_adjust(left=0.4)
plt.show()

Verändere die 0.4 in plt.subplots_adjust(left=0.4) in größere und kleinere Werte, und
versuche zu verstehen, was passiert, wenn du die Abbildung neu erstellst.

• (A) Geschafft

Aufgrund der sehr großen Balken für die Spalten id und NAME und host id ist es schwer,
die kleinere Balken überhaupt zu erkennen. Erzeuge die Abbildung nochmal, aber ohne
die drei genannten Spalten. Erreiche das, indem du einen reduzierten DataFrame
erstellst, der nur die anderen Spalten enthält. Dies sollst du auf zwei verschiedene Arten
tun: Einmal indem du die drei Spalten explizit angibst, die du löschen möchtest. Einmal
indem du nur Spalten behalten möchtest, die maximal 25000 einzigartige Werte
enthalten.

• (A) Geschafft

Erzeuge schließlich die Abbildung noch ein drittes Mal, aber nun nur für Spalten, die
maximal 10 einzigartige Werte enthalten.

• (A) Geschafft

13

14 / 14

Selektiere aus unserem AirBnB Datensatz nur die Spalten, die numerische Daten
enthalten (Integer und Float). Sortiere die Spalten alphabetisch. Anschließend soll
mittels df.columns.str.lower() alle Spaltennamen in Kleinbuchstaben umgewandelt
werden. Sortiere die Spalten erneut alphabetisch. Vergleiche die Ergebnisse der beiden
Sortierungen und prüfe, ob es Unterschiede gibt, die mit der Groß- und Kleinschreibung
zusammenhängen.

• (A) Nein, beide Sortierungen sind identisch.
• (B) Ja, Großbuchstaben werden vor Kleinbuchstaben sortiert.
• (C) Ja, Großbuchstaben hinter Kleinbuchstaben sortiert.

Erzeuge einen Dataframe namens mein_df mit 5 Spalten und 5 Zeilen. Nach ausführen
dieses Befehls sollte mein_df2 genau 4 Spalten und mein_df3 genau 2 Spalten haben.

mein_df2 = mein_df.dropna(axis = 1, how = 'all')
mein_df3 = mein_df2.filter(like = 'spalte')

• (A) Geschafft

14

	Spalten selektieren/sortieren
	selektieren
	sortieren
	selektiere von:bis
	anhand von Spalteneigenschaften
	Datentyp
	Spaltenname
	Nur ein Wert
	Fehlende Werte

	Übungen

