< BioMath

Spalten selektieren
by Woche 8

Wie im vorigen Kapitel setzen wir zunachst wieder Pandas Optionen und importieren
unseren AirBnB Datensatz.

import pandas as pd

pd.set option('display.max_columns', 4)
pd.set option('display.max_rows', 6)
pd.set option('display.max colwidth', 24)

csv_url = 'https://github.com/SchmidtPaul/ExampleData/raw/main/airbnb open
data/Airbnb Open Data.csv'
df = pd.read csv(csv_url, dtype={25: str})

df

id NAME ... house rules license
0 1001254 C(Clean & quiet apt ho... ... Clean up and treat t... NaN
1 10021062 Skylit Midtown Castle ... Pet friendly but ple... NaN
2 1002403 THE VILLAGE OF HARLE... ... I encourage you to u... NaN
102596 6093542 Comfy, bright room i... ... NaN NaN
102597 6094094 Big Studio-One Stop NaN NaN
102598 6094647 585 sf Luxury Studio ... NaN NaN

[102599 rows x 26 columns]

Spalten selektieren/sortieren
selektieren

Spalten selektieren bedeutet, dass man nur bestimmte Spalten behalt und die anderen
verwirft. Wir wissen bereits aus “5.2 Series & DataFrames”, dass wir eine oder mehrere
Spalten selektieren kénnen, indem wir

* Den Spaltennamen mit Punkt an den DataFrame hangen

» Den Spaltennamen oder eine Liste von Spaltennamen in eckigen Klammern an den
DataFrame hangen

» Den Spaltennamen oder eine Liste von Spaltennamen hinter das Komma in . loc[:,]
schreiben

1/14

) BioMath

» Den Spaltenindex oder eine Liste von Spaltenindizes hinter das Komma in .iloc[:,]
schreiben

Dabei gibt es eine Besonderheit beim selektieren einer einzelnen Spalte: Wahrend
sowohl df.price als auch df['price'] eine Series zuriickgeben, gibt df[['price']] eine
DataFrame mit nur einer Spalte/Series zurtick. Das ist ein kleiner, aber feiner
Unterschied, der fur die weiteren Schritte wichtig sein kann.

In den folgenden Code-Beispielen sind die alternativen Befehle, die zum selben
Ergebnis flihren einfach untereinander geschrieben.

Eine Spalte als Series

df.price
df['price']
df.loc[:, 'price'l
df.iloc[:, 15]

0 $966
1 $142
2 $620
102596 $988
102597 $546

102598 $1,032
Name: price, Length: 102599, dtype: object

Eine Spalte als DataFrame

df[['price'l]]
df.loc[:, ['price'll
df.iloc[:, [15]]

price
0 $966
1 $142
2 $620

102596 $988
102597 $546
102598 $1,032

[102599 rows x 1 columns]

Mehrere Spalten als DataFrame

2/14

) BioMath

df[['price', 'room type'll
df.loc[:, ['price', 'room type']]
df.iloc[:, [15, 13]]

price room type
0 $966 Private room
1 $142 Entire home/apt
2 $620 Private room
102596 $988 Private room

102597 $546 Entire home/apt
102598 $1,032 Entire home/apt

[102599 rows x 2 columns]

sortieren

Gleichermalien kdnnen wir auch die Spalten gleichzeitig selektieren und ihre
Reihenfolge andern, indem wir die Spalten direkt in der gewlinschten Reihenfolge in die
eckigen Klammern schreiben.

neuer df = df[['room type', 'price'll
neuer df = df.loc[:, ['room type', 'price'l]]
neuer df = df.iloc[:, [17, 15]]
neuer df
minimum nights price
0 10.0 $966
1 30.0 $142
2 3.0 $620
102596 3.0 $988
102597 2.0 $546
102598 1.0 $1,032

[102599 rows x 2 columns]

Wollen wir allerdings nur die Reihenfolge einiger Spalten andern und die nicht-
betroffenen Spalten trotzdem beibehalten, so missen wir trotzdem alle Spalten in der
gewilnschten Reihenfolge explizit angeben. Das mussen wir aber nicht manuell tun,
sondern kdnnen uns die Spaltennamen mit df.columns holen und dann z.B. mithilfe von
List Comprehension die neue Reihenfolge als Liste speichern. Als Beispiel mochten wir
die Spalten room type und price an den Anfange der Tabelle setzen, wobei alle anderen

3/14

) BioMath

Spalten dahinter so bleiben wie sie sind. Der Befehl df.columns gibt uns alle
Spaltennamen als Liste zurlick:

df.columns

Index(['id', 'NAME', 'host id', 'host identity verified', 'host name',

'neighbourhood group', 'neighbourhood', 'lat', 'long', 'country',
'country code', 'instant bookable', 'cancellation policy', 'room type',
'Construction year', 'price', 'service fee', 'minimum nights',

‘number of reviews', 'last review', 'reviews per month',

'review rate number', 'calculated host listings count',

'availability 365', 'house rules', 'license'l,

dtype='object')

Das kénnen wir uns zu Nutze machen, indem wir eine Liste erste spalten erstellen, die
die gewlinschten Spaltennamen enthalt und dann die restlichen Spaltennamen in einer
Liste restliche spalten speichern. Letzteres kbnnen wir mit List Comprehension (siehe
2.5 If-Else & Loops) erreichen, indem wir alle Spaltennamen durchgehen und nur
diejenigen behalten, die nicht in erste_spalten enthalten sind. Schliellich figen wir
beides zu einer gemeinsamen Liste neue_spaltenreihenfolge zusammen, die wir dann
Ubergeben kdnnen.

erste spalten = ['room type', 'price'l]

restliche spalten = [spalte for spalte in df.columns if spalte not in
erste spalten]

neue_spaltenreihenfolge = erste spalten + restliche spalten

neuer df = df[neue spaltenreihenfolge]
neuer df = df.loc[:,neue spaltenreihenfolge]
neuer df

room type price ... house rules license
0 Private room $966 ... Clean up and treat t... NaN
1 Entire home/apt $142 ... Pet friendly but ple... NaN
2 Private room $620 ... I encourage you to u... NaN
102596 Private room $988 e NaN NaN
102597 Entire home/apt $546 . NaN NaN
102598 Entire home/apt $1,032 - NaN NaN

[102599 rows x 26 columns]

4/14

selektiere von:bis

Manchmal méchte man auch von einer bestimmten Spalte bis zu einer anderen Spalte
selektieren. Das kdénnen wir z.B. durch slicing erreichen, indem einfach die zwei
Spaltennamen durch einen Doppelpunkt getrennt angeben.

df.loc[:, 'room type':'price']

room type Construction year price
0 Private room 2020.0 $966
1 Entire home/apt 2007.0 $142
2 Private room 2005.0 $620
102596 Private room 2009.0 $988
102597 Entire home/apt 2015.0 $546
102598 Entire home/apt 2010.0 $1,032

[102599 rows x 3 columns]

Wollen wir allerdings zusétzlich z.B. noch eine weitere Spalte wie id selektieren, so geht
das nicht einfach indem wir beispielsweise schreiben df.loc[:, ['id', 'room
type':'price']]". Leider erlaubt Pandas diese Kombination aus expliziten
Spaltennamen und einem Slice nicht. Stattdessen kdnnten wir etwas umstandlich (aber
dennoch womoglich besser als ganz manuell) die Spaltennamen aus separaten
Schritten kombinieren.

cols
cols

df.loc[:, 'room type':'price'].columns
['id'] + list(cols)

df.loc[:, cols]

id room type Construction year price
0 1001254 Private room 2020.0 $966
1 1002102 Entire home/apt 2007.0 $142
2 1002403 Private room 2005.0 $620
102596 6093542 Private room 2009.0 $988
102597 6094094 Entire home/apt 2015.0 $546
102598 6094647 Entire home/apt 2010.0 $1,032

[102599 rows x 4 columns]

Mochten wir eine oder mehrere Spalten |6schen, so kénnen wir das mit dem Befehl
drop() tun. Dabei missen wir angeben, welche Spalten geléscht werden sollen und ob
es sich dabei um Zeilen oder Spalten handelt. Letzteres kdnnen wir mit dem Argument

) BioMath

5/14

axis tun, wobei axis

0 fir Zeilen' und axis

1 fir Spalten steht. Alternativ kann man

die zu I6schenden Spalten auch dem Argument columns= Ubergeben - dann wird axis
automatisch auf 1 gesetzt.

neuer df = df.loc[:,

‘room type':'price']

neuer df.drop('room type', axis =

Construction year

0
1
2
102596
102597
102598

2020.
.0
.0

2007
2005

2009.
2015.
2010.

0

(<}

[102599 rows x 2 columns]

neuer df = df.loc[:,

neuer df.drop(columns =

Construction year

0
1
2
102596
102597
102598

2020.
.0
.0

2007
2005

2009.
2015.
2010.

0

(<}

[102599 rows x 1 columns]

price
$966
$142
$620

$988
$546
$1,032

"room type':'price']
['room type',

'price'l])

anhand von Spalteneigenschaften

Ebenso muss man manchmal Spalten selektieren/Idschen, die bestimmte Eigenschaften

haben. Das kénnen z.B. Spalten sein,

+ die einen bestimmten Datentyp haben

+ deren Spaltenname mit einem bestimmten Buchstaben beginnt oder endet 0.a.
+ die nur fehlende Werte enthalten

« die nur einen einzigen Wert enthalten

"Prinzipiell kann man mit drop () auch Zeilen I6schen und deren Indices kdnnten ja ebenfalls als
Strings wie room type usw. definiert worden sein. Deshalb ist es wichtig, explizit anzugeben, dass es

sich um Spalten handelt, indem wir axis = 1 setzen.

) BioMath

6/14

All diese Falle haben gemeinsam, dass wir erst eine entsprechende Liste von
Spaltennamen erstellen kénnten und dann diese Liste mit den oben gelerente Befehlen
verwenden konnen. Es gibt aber auch spezielle Funktionen, die uns das Leben
erleichtern. Hier werden wir uns ein paar davon anschauen.

Datentyp

Mochten wir z.B. alle Spalten selektieren, die den Datentyp float64 haben, so kénnte
man erst alle Spaltennamen mit dem entsprechenden Datentyp herausfinden und dann
diese Spalten selektieren. Wir tun das hier wie folgt: df.dtypes gibt uns eine Series
zurlick, die die Datentypen aller Spalten enthalt, wobei die Spaltennamen in dieser
Series im Index stehen. Mit df.dtypes == 'float64' erhalten wir eine Series mit True
und False Werten, die angibt, ob der Datentyp der Spalte float64 ist. Mit
df.dtypes[df.dtypes == 'float64'] erhalten wir schliel3lich nur die Spaltennamen, die
dabei ein True haben. Von dieser Series kdnnen wir dann die Indices (also die
Spaltennamen) extrahieren und diese dann zum Selektieren verwenden.

cols = df.dtypes[df.dtypes == 'float64'].index
df[cols]
lat long ... calculated host listings count \
0 40.64749 -73.97237 ... 6.0
1 40.75362 -73.98377 ... 2.0
2 40.80902 -73.94190 ... 1.0

102596 40.67505 -73.98045
102597 40.74989 -73.93777
102598 40.76807 -73.98342

=R e
© 0o o -

availability 365

0 286.0
1 228.0
2 352.0
102596 342.0
102597 386.0
102598 69.0

[102599 rows x 9 columns]

Fir speziell solche Falle gibt es eine Hilfsfunktion names select dtypes(), mit der wir
direkt die Spalten selektieren, die einen bestimmten Datentyp haben. Dabei kdnnen wir
auch mehrere Datentypen angeben, indem wir sie in einer Liste Ubergeben und
aulRerdem zwischen include= und exclude= wahlen. Da es in unserem Datensatz nur die

) BioMath

7/14

Datentypen int64, float64 und object gibt, kdnnen wir also wie folgt jeweils nur die
Spalten des Ganzzahlen-Typs behalten.

df.select dtypes(include = 'int64')

id
0 1001254
1 1002102
2 1002403

102596 6093542
102597 6094094
102598 6094647

[102599 rows x 2

df.select dtypes(exclude = ['float64',

id
0 1001254
1 1002102
2 1002403

102596 6093542
102597 6094094
102598 6094647

[102599 rows x 2

Spaltenname

host id
80014485718
52335172823
78829239556

69050334417
11160591270
68170633372

columns]

host id
80014485718
52335172823
78829239556

69050334417
11160591270
68170633372

columns]

'object'])

Mdchten wir z.B. alle Spalten selektieren, die den String id enthalten, so kénnten wir das
wie folgt tun: df.columns.str.contains('id") gibt uns eine Series zurlick, die True und
False Werte enthalt, je nachdem ob der Spaltenname den String id enthalt oder nicht.
Mit df.columns[df.columns.str.contains('id"')] erhalten wir schliellich nur die
Spaltennamen, die dabei ein True haben. Von dieser Series kénnen wir dann die Indices
(also die Spaltennamen) extrahieren und diese dann zum Selektieren verwenden.

cols = df.columns[df.columns.str.contains('id"')]

df[cols]

) BioMath

8/14

) BioMath

id host id host identity verified
0 1001254 80014485718 unconfirmed
1 1002102 52335172823 verified
2 1002403 78829239556 NaN
102596 6093542 69050334417 unconfirmed
102597 6094094 11160591270 unconfirmed
102598 6094647 68170633372 unconfirmed

[102599 rows x 3 columns]

Fir solche Falle gibt es wiederum eine Hilfsfunktion names filter(), mit der wir direkt
die Spalten selektieren, die einen bestimmten String enthalten. Mit dem Argument like=
kénnen wir dabei den String angeben, den die Spalten enthalten sollen.

df.filter(like = 'id")

id host id host identity verified
0 1001254 80014485718 unconfirmed
1 10021602 52335172823 verified
2 1002403 78829239556 NaN
102596 6093542 69050334417 unconfirmed
102597 6094094 11160591270 unconfirmed
102598 6094647 68170633372 unconfirmed

[102599 rows x 3 columns]
Neben like= kann in der filter() Funktion auch regex= verwendet werden, um die
Spaltennamen anhand eines regularen Ausdrucks (siehe Ende 5.4 Strings & Method

Chaining) zu filtern. Beispielsweise kdnnten wir so auch alle Spalten behalten, die mit
review beginnen oder mit id enden.

df.filter(regex = '“review')

reviews per month review rate number

0 0.21 4.0

1 0.38 4.0

2 NaN 5.0

102596 NaN 5.0

102597 0.10 3.0

102598 NaN 3.0
9

9/14

) BioMath

[102599 rows x 2 columns]

df.filter(regex = 'id$")

id host id
0 1001254 80014485718
1 1002102 52335172823
2 1002403 78829239556

102596 6093542 69050334417
102597 6094094 11160591270
102598 6094647 68170633372

[102599 rows x 2 columns]

Ubrigens hat die filter() Funktion auch ein axis= Argument, kann also prinzipiell wie
schon drop () auch auf Zeilen angewendet werden. Der Default ist aber, dass es sich um
Spalten handelt, sodass wir das axis=1 nicht explizit angeben missen.

Nur ein Wert

Manchmal erhalt man grofRe, unubersichtliche Datensatze, die viele Spalten enthalten.
Es kann dann nitzlich sein all die Spalten zu I6schen, die nur einen einzigen Wert
enthalten, da diese fir die Analyse ggf. keinen relevanten Mehrwert mitbringen.

Wir kénnen das z.B. mit der Funktion nunique() tun, die uns die Anzahl der einzigartigen
Werte je Spalte zurlckgibt. df.nunique() == 1 gibt uns eine Series zuruck, die True und
False Werte enthalt, je nachdem ob die Spalte nur einen einzigen Wert enthalt oder
nicht. Mit df.columns[df.nunique() == 1] erhalten wir schliel3lich nur die Spaltennamen,
die dabei ein True haben. Von dieser Series kdnnen wir dann die Indices (also die
Spaltennamen) extrahieren und diese dann zum Selektieren verwenden.

cols = df.columns[df.nunique() == 1]
df[cols]

country country code license

0 United States us NaN

1 United States us NaN

2 United States us NaN
10

10/ 14

102596 United States us NaN
102597 United States us NaN
102598 United States us NaN

[102599 rows x 3 columns]

Fehlende Werte

1 Fehlwerte

Fehlwerte werden in einem spateren Kapitel ausfiihrlicher behandelt. Hier ist es
zunachst wichtig zu wissen, dass fehlende Werte oder Daten in Python nicht nur mit
None markiert werden, sondern in Pandas auch mit NAZ, was flr “not available” steht.
In Pandas gibe die Funktionen isna() und notna() gibt, die uns True und False
zurlckgeben, je nachdem ob Werte fehlen oder vorhanden sind.

Mdchten wir z.B. alle Spalten I6schen, die ausschlieBlich Fehlwerte (also keine Werte)
enthalten, so kdnnten wir das wie folgt tun: df.isna().all() gibt uns eine Series zurick,
die True und False Werte enthalt, je nachdem ob die Spalte nur fehlende Werte enthalt
oder nicht. Mit df.columns[df.isna().all()] erhalten wir schlieBlich nur die
Spaltennamen, die dabei ein True haben. Von dieser Series kdnnen wir dann die Indices
(also die Spaltennamen) extrahieren und diese dann zum L&schen verwenden.

Leider hat unser Beispieldatensatz keine Spalten, die nur fehlende Werte enthalten,
sodass wir uns hier kurz einen neuen Datensatz erstellen.

df2 = pd.DataFrame({
'a': [1, 2, 3],
'b': [4, 5, pd.NAJ,
'c': [None, None, Nonel,
'd': [pd.NA, pd.NA, pd.NA]

1)
df2

a b C d
0 1 4 None <NA>
1 2 5 None <NA>
2 3 <NA> None <NA>

2oder NaN oder NaT

11

) BioMath

11/ 14

) BioMath

df2.isna()
df2.isna().all()

a b C d a False

0 False False True True b False
1 False False True True C True
2 False True True True d True
dtype: bool

cols = df2.columns[df2.isna().all()]
df2.drop(cols, axis = 1)

a b
0 1 4
1 2 5
2 3 <NA>

Es gibt aber auch hier wieder eine Hilfsfunktion namens dropna(), mit der wir direkt die
Spalten I6schen kdénnen, die nur fehlende Werte enthalten. Mit dem Argument how=
kénnen wir dabei angeben, ob wir die Spalten |I6schen wollen, die entweder nur fehlende
Werte enthalten (al11) oder mindestens einen fehlenden Wert enthalten (any).

df2.dropna(axis = 1, how = 'all')

a b
0 1 4
1 2 5
2 3 <NA>

Ubungen

Far unseren AirBnB Datensatz kdnnen wir die Anzahl einzigartiger Werte pro Spalte wie
folgt in einem Balkendiagramm darstellen. Das Balkendiagramm ist in diesem Fall
horizontal, da wir .barh() anstelle von .bar() verwenden.

import pandas as pd
import matplotlib.pyplot as plt

unique counts = df.nunique()

12

12/ 14

< BioMath

plt.figure()

plt.barh(y = unique counts.index, width = unique counts.values)
plt.ylabel('Spalten')

plt.xlabel('Anzahl einzigartiger Werte')

plt.subplots adjust(left=0.4)

plt.show()

I|ce

caIcuIated hose{ Ils)l{ngr? ogni

reV|ews ge mon
ewew

number o revi
mum .ni
serV|c

Constructlon ear

canc?llau%%&o jg

count I’g Co

neighbo hooa§
nelghbougrE)o rou
host_identi ﬁM

0 20000 40000 60000 80000100000

Anzahl einziaartiaer Werte

Verandere die 0.4 in plt.subplots_adjust(left=0.4) in groRere und kleinere Werte, und
versuche zu verstehen, was passiert, wenn du die Abbildung neu erstellst.

* (A) Geschafft

Aufgrund der sehr groRen Balken flr die Spalten id und NAME und host id ist es schwer,
die kleinere Balken Uberhaupt zu erkennen. Erzeuge die Abbildung nochmal, aber ohne
die drei genannten Spalten. Erreiche das, indem du einen reduzierten DataFrame
erstellst, der nur die anderen Spalten enthalt. Dies sollst du auf zwei verschiedene Arten
tun: Einmal indem du die drei Spalten explizit angibst, die du I6schen mdchtest. Einmal
indem du nur Spalten behalten méchtest, die maximal 25000 einzigartige Werte
enthalten.

* (A) Geschafft

Erzeuge schlief3lich die Abbildung noch ein drittes Mal, aber nun nur fir Spalten, die
maximal 10 einzigartige Werte enthalten.

* (A) Geschafft

13

13/14

) BioMath

Selektiere aus unserem AirBnB Datensatz nur die Spalten, die numerische Daten
enthalten (Integer und Float). Sortiere die Spalten alphabetisch. Anschlieend soll
mittels df.columns.str.lower() alle Spaltennamen in Kleinbuchstaben umgewandelt
werden. Sortiere die Spalten erneut alphabetisch. Vergleiche die Ergebnisse der beiden
Sortierungen und priife, ob es Unterschiede gibt, die mit der Gro3- und Kleinschreibung
zusammenhangen.

* (A) Nein, beide Sortierungen sind identisch.
+ (B) Ja, Grol3buchstaben werden vor Kleinbuchstaben sortiert.
* (C) Ja, Grolibuchstaben hinter Kleinbuchstaben sortiert.

Erzeuge einen Dataframe namens mein df mit 5 Spalten und 5 Zeilen. Nach ausfiihren
dieses Befehls sollte mein_df2 genau 4 Spalten und mein_df3 genau 2 Spalten haben.

mein df2
mein df3

mein df.dropna(axis = 1, how = 'all')
mein df2.filter(like = 'spalte')

* (A) Geschafft

14

14 /14

	Spalten selektieren/sortieren
	selektieren
	sortieren
	selektiere von:bis
	anhand von Spalteneigenschaften
	Datentyp
	Spaltenname
	Nur ein Wert
	Fehlende Werte

	Übungen

