Fehlwerte
by Woche 9

Wie in den vorigen Kapiteln setzen wir zunachst wieder Pandas Optionen und
importieren unseren AirBnB Datensatz.

import numpy as np
import pandas as pd

pd.set option('display.max_columns', 4)

pd.set option('display.max rows', 6)

pd.set option('display.max_colwidth', 20)

csv_url = 'https://github.com/SchmidtPaul/ExampleData/raw/main/airbnb open

data/Airbnb Open Data.csv'

df = pd.read csv(csv_url, dtype={25: str})

df

A WNRFR O

102594
102595
102596
102597
102598

[102599

In diesem Kapitel lernen wir, wie wir mit Fehlwerten umgehen kénnen. Fehlwerte sind in
der Praxis ein haufiges Problem. Sie kénnen durch verschiedene Ursachen entstehen,
wie z.B. fehlerhafte oder schlechtweg nicht-durchgefiihrte Messungen. Tatsachlich gibt
es beim Umgang mit Fehlwerten in Python einige Besonderheiten, die nicht unbedingt
intuitiv sind. Gleichzeitig treten sie in der Praxis sehr haufig auf und kénnen bei der

id
1001254
1002102
1002403
1002755
1003689
6092437
6092990
6093542

6094094
6094647

NAME
Clean & quiet ap...
Skylit Midtown C...
THE VILLAGE OF H...

NaN
Entire Apt: Spac..

Spare room in Wi...
Best Location ne...
Comfy, bright ro...
Big Studio-One S...
585 sf Luxury St...

rows x 26 columns]

Analyse von Daten zu Problemen fuhren.

house rules license

Clean up and tre...
Pet friendly but...
I encourage you ...

NaN
Please no smokin...

No Smoking No Pa...
House rules: Gue...
NaN
NaN
NaN

NaN
NaN
NaN
NaN
NaN
NaN
NaN
NaN

NaN
NaN

< BioMath

1/16

) BioMath

Fehlwerte in Python/Numpy/Pandas

In Python gibt es unterschiedliche Weisen, um Fehlwerte zu reprasentieren. Dabei
stehen die Kurzel NaN fur Not a Number und NA fir Not Available. Mit den uns
bekannten Module kénnen euch folgende Werte begegnen:

* None: Dies ist ein spezielles Objekt in Python, das oft verwendet wird, um das Fehlen
eines Werts zu signalisieren.

* np.nan: Dies steht fur Not a Number und werden verwendet, um fehlende/undefinierte
Gleitkommazahlen darzustellen.

* pd.NA: Dies ist ein spezieller Wert aus der pandas-Bibliothek, der fiir fehlende Daten
Uber verschiedene Datentypen hinweg verwendet wird, einschlielich Integer und
Strings.

* pd.NaT: Dies steht flir Not a Time und wird in pandas flir fehlende oder undefinierte
Zeitstempel bei Datums- und Zeitdatentypen verwendet.

Ein wesentlicher Unterschied zwischen den ersten beiden ist, dass None ein allgemeines
Python-Objekt ohne spezifischen Datentyp ist, wahrend np.nan speziell fir numerische
(Gleitkomma-)Berechnungen in numpy gedacht ist. np.nan ist also (wie alles im numpy
Paket) ideal fur Situationen, in denen Genauigkeit und der Umgang mit Zahlen in
numerischen Berechnungen kritisch sind.

type(None)
<class 'NoneType'>
type(np.nan)

<class 'float'>

In praktischen Anwendungen fuhrt das Hinzufuigen von np.nan zu einem Array oder einer
Serie dazu, dass diese, wenn sie nicht explizit als Gleitkommazahl definiert ist, als Array
vom Typ object behandelt wird. Dies liegt daran, dass np.nan als Gleitkommazahl
definiert ist und somit eine Typumwandlung des gesamten Arrays erzwingt, um
Datentypinkonsistenzen zu vermeiden.

Erzeugen wir einen Array mit Ganzzahlen und einem None Wert, so wird der gesamte
Array zu einem object-Datentyp (also keinem numerischen Datentyp) konvertiert, da
None keine Zahl ist und auch nicht automatisch zu einer Zahl konvertiert wird. Erzeugen
wir hingegen einen Array mit Ganzzahlen und einem np.nan Wert, so wird der gesamte
Array zu einem float64-Datentyp (nicht zu integer64) konvertiert, da np.nan wie gesagt
vom Typ Float/Gleitkommazahl ist.

2/16

X = np.array([1, None, 31)
X
x.dtype

array([1l, None, 3], dtype=object)
dtype('0")

X = np.array([1, np.nan, 3])
X
x.dtype

array([1., nan, 3.1)
dtype('float64')

Der Wert pd.NA aus dem Pandas Modul ist eine relativ neue Erganzung und soll die
Verwendung von None und np.nan vereinheitlichen, da es sowohl fir numerische als
auch fur nicht-numerische Datentypen geeignet ist. pd.NA ist eine Art universeller
Fehlwert, welcher als <NA> angezeigt wird un in allen Datentypen verwendet werden
kann.

pd.Series(
[1, pd.NA, 3],
dtype="'Int64'
)

0 1
1 <NA>
2 3

dtype: Int64

pd.Series (
[1.5, pd.NA, 3.5],
dtype="'Float64'

)

0 1.5
1 <NA>
2 3.5

dtype: Float64

) BioMath

3/16

) BioMath

pd.Series (
["Eins", pd.NA, "Drei"],
dtype='string'

)

0 Eins
1 <NA>
2 Drei

dtype: string

Es ist Ubrigens auch ohne weiteres moglich Listen, welche None und/oder np.nan
enthalten, in eine Pandas Series oder einen DataFrame zu konvertieren. Pandas wird
dabei versuchen automatisch die Datentypen der Spalten erkennen und ggf. die
Fehlwerte konvertieren.

pd.Series (
[1, None, "Drei"]

0 1
1 None
2 Drei

dtype: object

pd.Series (
[1, None, np.nan]

0 1.0
1 NaN
2 NaN

dtype: float64

pd.Series(
[1, None, np.nan],
dtype="'Int64'

)

4/16

0 1
1 <NA>
2 <NA>
dtype: Int64

pd.Series(
["One", None, np.nan],
dtype='string'

)

0 One

1 <NA>

2 <NA>

dtype: string
Letztendlich lauft es darauf hinaus, dass in DataFrame-Spalten mit Gleitzahl Datentyp
np.nan verwendet werden sollte, in Spalten mit Datums-/Zeitangaben pd.NaT und in
Spalten mit nicht-numerischen Datentypen pd.NA oder None.

Fehlwerte erkennen

In der Praxis ist es wichtig, Fehlwerte zu erkennen, um sie korrekt behandeln zu kénnen.

Ein einfaches Beispiel ware es die Daten so zu filtern, dass nur die Zeilen mit
Fehlwerten in einer bestimmten Spalte Ubrig bleiben. Tatsachlich ist eine dafiir
notwendige Prifung aber nicht wie vielleicht erwartet mit dem == Operator mdglich,
sondern muss mit der Methode isna() durchgefiihrt werden.

pd.Series([1, None, np.nan, pd.NA]) == pd.NA

0 False
1 False
2 False
3 False
dtype: bool

pd.Series([1, None, np.nan, pd.NA]).isna()

True

0
1
2 True
3
dtype: bool

) BioMath

5/16

) BioMath

Die Methode isna() gibt fur jeden Wert in der Serie True zurlick, wenn der Wert ein
Fehlwert ist, und False, wenn der Wert ein gultiger Wert ist. Das Gegenstlick dazu ist die
Methode notna(). So kdnnten wir also alle Zeilen aus unserem AirBnB Datensatz filtern,
in denen die Spalte host name fehlende Werte enthalt. Allerdings erzeugen wir uns
vorerst wieder einen Teildatensatz, um die Ausgabe Ubersichtlich zu halten.

df2 = df.loc[[1, 100, 2, 210, 3, 102049], ['host name', 'price'l]l

df2.reset index(drop=True, inplace=True)

df2 = df2.assign(
host = df2['host name'].astype('string'),
price = df2['price'].str[1l:].astype(float)

)
df2.drop(columns="'host name', inplace=True)

df2

price host
142.0 Jenna
739.0 <NA>
620.0 Elise

NaN Ryan
368.0 Garry

NaN <NA>

U b WNRFO

df2[df2['host'].isna()]

price host
1 739.0 <NA>
5 NaN <NA>

df2[df2['host'].notna()]

price host
142.0 Jenna
620.0 Elise

NaN Ryan
368.0 Garry

A W N O

Es muss Ubrigens auch klar sein, dass die Fehlwerte beim Filtern so auch immer
separat gehandhabt werden missen. Das wird deutlich, wenn wir die Daten hier mal in
vermeintlich zwei Teile trennen, indem wir einmal nach host == Jenna und einmal nach
host != Jenna filtern. Man mag erwarten, dass jede Zeile entweder in der ersten oder in

6/16

) BioMath

der zweiten Bedingung enthalten ist, da sie ja entweder Jenna als host haben oder nicht.
Wie wir aber sehen, schlie3t keine der beiden Bedinungen die Fehlwerte mit ein. Wir
erhalten so also quasi nur zwei von drei Teilen der Daten, wobei der dritte Teil der mit
den Fehlwerten ist:

df2[df2['host'] == 'Jenna'l]

price host
0 142.0 Jenna

df2[df2['host'] '= 'Jenna'l

price host
2 620.0 Elise
3 NaN Ryan
4 368.0 Garry

df2[df2['host'].isna()]

price host
1 739.0 <NA>
5 NaN <NA>

Falls also das Ziel sein sollte alle Zeilen (auch die mit Fehlwerten) aufer denen zu
behalten, die nicht Jenna als host haben, dann misste die Bedingung die Fehlwerte
explizit mit einschlieRen. Das geht z.B. so:

behalten = (df2['host'] != 'Jenna') | df2['host'].isna()
df2[behalten]

price host
739.0 <NA>
620.0 Elise
NaN Ryan
368.0 Garry
NaN <NA>

u B~ WN R

7/16

1 Was ist mit isnull()?

Neben der hier gezeigten .isna() Methode gibt es auch die Methode .isnull().
Beide sind in Pandas identisch und kénnen synonym verwendet werden. Gleiches
gilt fir die Methoden .notna() und .notnull(). In diesem Blogpost gibt es etwas
mehr Details dazu warum das so ist.

Fehlwerte entfernen

Eine einfache Mdglichkeit, um mit Fehlwerten umzugehen, ist es, sie einfach zu
entfernen. Da wir gerade .notna() kennengelernt haben, kdnnten wir damit schlichtweg
filtern. Allerdings gibt es auch eine Methode dropna(), die alle Zeilen mit Fehlwerten
entfernt und dabei einfacher und flexibler ist. Das Argument how= kann entweder 'any"
sein (=Standardwert), um Zeilen mit mindestens einem Fehlwert zu entfernen, oder
'all', um nur Zeilen zu entfernen, die ausschliel3lich aus Fehlwerten bestehen. Mit dem
Argument subset= kdnnen wir auch explizit angeben, in welchen Spalten nach
Fehlwerten gesucht werden soll.

df2.dropna(how="any")

N

price host
142.0 Jenna
620.0 Elise
368.0 Garry

df2.dropna(how=

H~ W N RER O

df2.dropna(subset=['host'])

0
2

price host
142.0 Jenna
739.0 <NA>
620.0 Elise

NaN Ryan
368.0 Garry

price host
142.0 Jenna
620.0 Elise

‘all')

) BioMath

8/16

https://datascience.stackexchange.com/a/37879

) BioMath

3 NaN Ryan
4 368.0 Garry

Ubrigens hat auch diese Methode ein axis= Argument. Wahrend also standardmaRig mit
axis=0 die Zeilen entfernt werden, kénnen wir mit axis=1 auch Spalten entfernen, die
Fehlwerte enthalten. Schliellich gibt es sogar ein thresh= Argument, mit dem wir
angeben koénnen, wie viele Fehlwerte in einer Zeile/Spalte maximal enthalten sein
dirfen, damit sie nicht entfernt wird. So kbnnen wir demnach auch zwischen den
Extremen how="'any' und how="all' noch eine Zwischenldsung finden.

Fehlwerte ersetzen

Eine andere Mdglichkeit, mit Fehlwerten umzugehen, ist es, sie durch einen anderen
Wert zu ersetzen. Daflr gibt es die Methode fillna(), die den Fehlwert durch einen
anderen Wert ersetzt. Das Argument value= gibt an, durch welchen Wert ersetzt werden
soll. Gibt man nur einen Wert an, so wird jeder Fehlwert in der Serie/Spalte/Zeile bzw.
dem gesamten DataFrame durch diesen Wert ersetzt. Gibt man ein Dictionary an, so
koénnen auch unterschiedliche Werte fiir unterschiedliche Spalten angegeben werden.

df2.fillna(value="'Unbekannt")

price host
0 142.0 Jenna
1 739.0 Unbekannt
2 620.0 Elise
3 Unbekannt Ryan
4 368.0 Garry
5 Unbekannt Unbekannt
na ersatz = {'host': 'Unbekannt'}

df2.fillna(value=na _ersatz)

price host
0 142.0 Jenna
1 739.0 Unbekannt
2 620.0 Elise

9/16

3 NaN
4 368.0
5 NaN

na_ersatz
"host':
'price’

}

df2.fillna(value=na ersatz)

price
142.
739.
620.

368.

u b WNRFE O
(o}
[clclNoNolNoNol

Anstatt Werte vorzugeben, kdnnen wir auch die Methode ffill() (fronffill) oder bfill()
(backfill) verwenden, um Fehlwerte durch den vorherigen bzw. nachsten Wert zu
ersetzen. Diese Methoden kénnen entweder auf den gesamten DataFrame angewendet
werden oder auf eine spezifische Spalte.

Ryan
Garry
Unbekannt

= o

"Unbekannt',
: 0

host
Jenna
Unbekannt
Elise
Ryan
Garry
Unbekannt

df2. ffill()

price
142.
739.
620.
620.
368.
368.

u b WNRF O
[clcloNolNoNol

host
Jenna
Jenna
Elise

Ryan
Garry
Garry

df2.bfill()

price
142.0
739.0
620.0
368.0
368.0

NaN

U b WNRFRO

host
Jenna
Elise
Elise
Ryan
Garry
<NA>

10

) BioMath

10/ 16

df2['host'].ffill()

Jenna
Jenna
Elise
Ryan
Garry
Garry
Name: host, dtype: string

U b WNERFE O

Praxistipp

Die oben genannten Funktionen ersetzen Fehlwerte, die bereits korrekt als solche in den
Daten definiert sind. In der Praxis kommt es aber regelmaRig vor, dass statt Fehlwerten
leere Strings oder Strings wie 'NA' oder 'missing' verwendet werden. Diese werden von
den Funktionen nicht als Fehlwerte erkannt und daher auch nicht ersetzt. Um solche
Werte zu erkennen und zu ersetzen, kdnnen wir die Methode replace() verwenden.
Diese Methode ersetzt Werte in einer Serie/Spalte/Zeile bzw. dem gesamten DataFrame
durch andere Werte. Das erste Argument to_replace= gibt an, welcher Wert ersetzt
werden soll, und das zweite Argument value= gibt an, durch welchen Wert ersetzt
werden soll.

dat = ['Valuel', 'Value2', '', 'NA', 'missing', None, np.nan, pd.NA, 'Value3']
auchfehlwerte = ['', 'NA', 'missing']

pd.Series(dat)

Valuel
Value2

0

1

2

3 NA
4 missing
5 None
6 NaN
7 <NA>
8 Value3
dtype: object

11

) BioMath

11/16

) BioMath

pd.Series(dat)
.fillna(value=pd.NA)

Valuel
Value?2

0

1

2

3 NA
4 missing
5 <NA>
6 <NA>
7 <NA>
8 Value3
dtype: object

pd.Series(dat).
replace(auchfehlwerte, pd.NA).
fillna(value=pd.NA)

0 Valuel
1 Value2
2 <NA>
3 <NA>
4 <NA>
5 <NA>
6 <NA>
7 <NA>
8 Value3
dtype: object

Mehr uber Fehlwerte erfahren

Prinzipiell wissen wir nun, dass wir Fehlwerte erkennen bzw. filtern kénnen. Wir wissen
auch, wie wir sie entfernen oder ersetzen kdnnen. In der Regel ist es aber auch wichtig
zU wissen, wie viele Fehlwerte in den Daten enthalten sind und wo sie sich befinden. Um
dies zu erfahren kann beispielsweise schlichtweg die .info() Methode verwendet
werden, da diese neben Dtype auch den Non-Null Count pro Spalte ausgibt. Alternativ
konnen wir auch die .isna() Methode verwenden, um zu zahlen, wie viele Fehlwerte in
jeder Spalte enthalten sind. Versucht man namlich die .sum() Methode auf boolean
Werte anzuwenden, so wird True als 1 und False als 0 interpretiert. Da die .isna()

12

12/ 16

) BioMath

Methode True flr Fehlwerte und False fur glltige Werte zurlickgibt, kbnnen wir so die
Anzahl der Fehlwerte in jeder Spalte zahlen.

df2.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6 entries, 0 to 5

Data columns (total 2 columns):

Column Non-Null Count Dtype

0 price 4 non-null float64
1 host 4 non-null string
dtypes: float64(1l), string(1l)
memory usage: 228.0 bytes

pd.Series([True, False, Truel).sum()
np.int64(2)
df2.isna().sum()

price 2
host 2
dtype: int64

Wer es noch genauer wissen will, kann auch das Modul missingno verwenden, welches
speziell fir die Visualisierung von Fehlwerten entwickelt wurde. Dieses Modul muss
allerdings erst installiert werden (siehe Kapitel 4.A Module installieren).

So kann beispielsweise eine sogenannte nullity matrix geplottet werden, die die
Verteilung der Fehlwerte in einem DataFrame visualisiert. Schwarz bedeutet dabei, dass
ein Wert vorhanden ist und weil} bedeutet, dass ein Wert fehlt. Auf diese Weise
bekommen wir einen schnellen Uberblick tber die Verteilung der Fehlwerte in allen
Spalten unseres groRen AirBnB Datensatzes. Das Modul bietet noch weitere solcher
Visualisierungen wie msno.bar() und msno.heatmap(), die wir hier aber nicht weiter
behandeln.

import missingno as msno
msno.matrix(df)

13

13/16

https://github.com/ResidentMario/missingno?tab=readme-ov-file#missingno-----
https://github.com/ResidentMario/missingno?tab=readme-ov-file#missingno-----

S S "

(\
“ o N 2
K
> <~‘ ga“ <°° & & &S
S Qo eeeeeeee © s Q«

"0
%
K
s/,’

@ e‘? &
| I 16
102599 I I I I

Wie gehen Funktionen mit Fehlwerten um?

Es soll an dieser Stelle einmal explizit darauf hingewiesen werden, dass Pandas
Fehlwerte in der Regel automatisch ignoriert. Das bedeutet, dass die meisten
Funktionen, die auf Pandas-Objekten angewendet werden, standardmafig Fehlwerte
ausschlief3en. Das ist in den meisten Fallen auch sinnvoll, da Fehlwerte oft nicht sinnvoll
interpretiert werden kénnen und die meisten Funktionen daher nicht sinnvoll mit ihnen
umgehen kénnen. Das bedeutet aber auch, dass ggf. unbemerkt Fehlwerte in den Daten
enthalten sind, die zu unerwarteten Ergebnissen fihren kénnen. Schliellich erkennt
man beim Betrachten der folgenden zwei Mittelwerte nicht, dass in der zweiten Serie ein
Fehlwert enthalten ist. Um sicherzustellen, dass Fehlwerte nicht ignoriert werden,
kénnen wir die Methode skipna=False verwenden. Diese Methode wird in vielen Pandas-
Funktionen unterstitzt und sorgt daflir, dass Fehlwerte nicht ignoriert werden. Das
bedeutet, dass die Funktionen np.mean() und np.sum() dann np.nan zuriickgeben, wenn
Fehlwerte in den Daten enthalten sind.

X = pd.Series([11, 12, 13])
x.mean()

np.float64(12.0)

y = pd.Series([11, 12, np.nan])
y.mean()

np.float64(11.5)

14

< BioMath

14 /16

) BioMath

y = pd.Series([11, 12, np.nan])
y.mean(skipna=False)

np.float64(nan)

1 Bei Numpy ist das anders

Bei Numpy ist das Verhalten anders. Hier wird z.B. der Mittelwert eines Arrays, der
einen Fehlwert enthalt, immer np.nan sein. Das bedeutet, dass Numpy-Funktionen
standardmaRig Fehlwerte nicht ignorieren. Das ist ein wichtiger Unterschied zu
Pandas. Bei np.mean(np.array([11, 12, np.nan])) wird also immer np.nan
zurtickgegeben. Es gibt auch kein Argument wie skipna=False, um dieses Verhalten
zu andern. Stattdessen gibt es die separate Funktion np.nanmean(), die explizit
Fehlwerte ignoriert.

© Weitere Ressourcen

* Pandas Crashkurs - fehlende Daten / Missing Values - Video 5/8 kompletter Kurs
auf deutsch/german

Ubungen
Berechne jeweils den Durchschnittspreis (Spalte price) aller AirBnB Unterkinfte in df2
fur folgende Szenarien und gib sie gerundet auf keine Nachkommastelle an.

e $istder Durchschnittspreis.

e $istder Durchschnittspreis, nachdem alle Zeilen geléscht wurden, in denen der
Hostname fehilt.

e $ist der Durchschnittspreis, nachdem alle Fehlwerte in der Spalte ‘price’ durch 0
ersetzt wurden.

e $istder Durchschnittspreis, nachdem alle Zeilen geléscht wurden, in denen der

Hostname fehlt und alle Fehlwerte in der Spalte ‘price’ durch 0 ersetzt wurden.
Welche Spalte in unserem AirBnB Datensatz enthalt die meisten Fehlwerte?
» Spaltenname:

Schau dir folgenden Python Code an und versuche durch Nachschlagen und
Ausprobieren auch die angewandten Methoden zu verstehen, die wir in diesem Kurs
noch nicht besprochen haben. Welche der folgenden Fragen wird mit diesem Code
beantwortet?

15

15/ 16

https://youtu.be/1Q7WH_WUI44?si=U0VtmAT4KE7GrQsu
https://youtu.be/1Q7WH_WUI44?si=U0VtmAT4KE7GrQsu

< BioMath

x = df.isna().sum().to frame()
x[x[0] == 0].shape[0]

* (A) Wie viele Spalten haben mindestens einen Fehlwert?
(B) Wie viele Spalten haben keinen Fehlwert?

* (C) Wie viele Spalten haben genau einen Fehlwert?

* (D) Wie viele Spalten haben ausschlieRlich Fehlwerte?

16

16/ 16

	Fehlwerte in Python/Numpy/Pandas
	Fehlwerte erkennen
	Fehlwerte entfernen
	Fehlwerte ersetzen
	Praxistipp

	Mehr über Fehlwerte erfahren
	Wie gehen Funktionen mit Fehlwerten um?
	Übungen

