
1 / 16

Fehlwerte
by Woche 9

Wie in den vorigen Kapiteln setzen wir zunächst wieder Pandas Optionen und
importieren unseren AirBnB Datensatz.

import numpy as np
import pandas as pd

pd.set_option('display.max_columns', 4)
pd.set_option('display.max_rows', 6)
pd.set_option('display.max_colwidth', 20)

csv_url = 'https://github.com/SchmidtPaul/ExampleData/raw/main/airbnb_open_
data/Airbnb_Open_Data.csv'
df = pd.read_csv(csv_url, dtype={25: str})

df

 id NAME ... house_rules license
0 1001254 Clean & quiet ap... ... Clean up and tre... NaN
1 1002102 Skylit Midtown C... ... Pet friendly but... NaN
2 1002403 THE VILLAGE OF H... ... I encourage you ... NaN
3 1002755 NaN ... NaN NaN
4 1003689 Entire Apt: Spac... ... Please no smokin... NaN
...
102594 6092437 Spare room in Wi... ... No Smoking No Pa... NaN
102595 6092990 Best Location ne... ... House rules: Gue... NaN
102596 6093542 Comfy, bright ro... ... NaN NaN
102597 6094094 Big Studio-One S... ... NaN NaN
102598 6094647 585 sf Luxury St... ... NaN NaN

[102599 rows x 26 columns]

In diesem Kapitel lernen wir, wie wir mit Fehlwerten umgehen können. Fehlwerte sind in
der Praxis ein häufiges Problem. Sie können durch verschiedene Ursachen entstehen,
wie z.B. fehlerhafte oder schlechtweg nicht-durchgeführte Messungen. Tatsächlich gibt
es beim Umgang mit Fehlwerten in Python einige Besonderheiten, die nicht unbedingt
intuitiv sind. Gleichzeitig treten sie in der Praxis sehr häufig auf und können bei der
Analyse von Daten zu Problemen führen.

1

2 / 16

Fehlwerte in Python/Numpy/Pandas
In Python gibt es unterschiedliche Weisen, um Fehlwerte zu repräsentieren. Dabei
stehen die Kürzel NaN für Not a Number und NA für Not Available. Mit den uns
bekannten Module können euch folgende Werte begegnen:

• None: Dies ist ein spezielles Objekt in Python, das oft verwendet wird, um das Fehlen
eines Werts zu signalisieren.

• np.nan: Dies steht für Not a Number und werden verwendet, um fehlende/undefinierte
Gleitkommazahlen darzustellen.

• pd.NA: Dies ist ein spezieller Wert aus der pandas-Bibliothek, der für fehlende Daten
über verschiedene Datentypen hinweg verwendet wird, einschließlich Integer und
Strings.

• pd.NaT: Dies steht für Not a Time und wird in pandas für fehlende oder undefinierte
Zeitstempel bei Datums- und Zeitdatentypen verwendet.

Ein wesentlicher Unterschied zwischen den ersten beiden ist, dass None ein allgemeines
Python-Objekt ohne spezifischen Datentyp ist, während np.nan speziell für numerische
(Gleitkomma-)Berechnungen in numpy gedacht ist. np.nan ist also (wie alles im numpy
Paket) ideal für Situationen, in denen Genauigkeit und der Umgang mit Zahlen in
numerischen Berechnungen kritisch sind.

type(None)

<class 'NoneType'>

type(np.nan)

<class 'float'>

In praktischen Anwendungen führt das Hinzufügen von np.nan zu einem Array oder einer
Serie dazu, dass diese, wenn sie nicht explizit als Gleitkommazahl definiert ist, als Array
vom Typ object behandelt wird. Dies liegt daran, dass np.nan als Gleitkommazahl
definiert ist und somit eine Typumwandlung des gesamten Arrays erzwingt, um
Datentypinkonsistenzen zu vermeiden.

Erzeugen wir einen Array mit Ganzzahlen und einem None Wert, so wird der gesamte
Array zu einem object-Datentyp (also keinem numerischen Datentyp) konvertiert, da
None keine Zahl ist und auch nicht automatisch zu einer Zahl konvertiert wird. Erzeugen
wir hingegen einen Array mit Ganzzahlen und einem np.nan Wert, so wird der gesamte
Array zu einem float64-Datentyp (nicht zu integer64) konvertiert, da np.nan wie gesagt
vom Typ Float/Gleitkommazahl ist.

2

3 / 16

x = np.array([1, None, 3])
x
x.dtype

array([1, None, 3], dtype=object)
dtype('O')

x = np.array([1, np.nan, 3])
x
x.dtype

array([1., nan, 3.])
dtype('float64')

Der Wert pd.NA aus dem Pandas Modul ist eine relativ neue Ergänzung und soll die
Verwendung von None und np.nan vereinheitlichen, da es sowohl für numerische als
auch für nicht-numerische Datentypen geeignet ist. pd.NA ist eine Art universeller
Fehlwert, welcher als <NA> angezeigt wird un in allen Datentypen verwendet werden
kann.

pd.Series(
 [1, pd.NA, 3],
 dtype='Int64'
)

0 1
1 <NA>
2 3
dtype: Int64

pd.Series(
 [1.5, pd.NA, 3.5],
 dtype='Float64'
)

0 1.5
1 <NA>
2 3.5
dtype: Float64

3

4 / 16

pd.Series(
 ["Eins", pd.NA, "Drei"],
 dtype='string'
)

0 Eins
1 <NA>
2 Drei
dtype: string

Es ist übrigens auch ohne weiteres möglich Listen, welche None und/oder np.nan
enthalten, in eine Pandas Series oder einen DataFrame zu konvertieren. Pandas wird
dabei versuchen automatisch die Datentypen der Spalten erkennen und ggf. die
Fehlwerte konvertieren.

pd.Series(
 [1, None, "Drei"]

)

0 1
1 None
2 Drei
dtype: object

pd.Series(
 [1, None, np.nan]

)

0 1.0
1 NaN
2 NaN
dtype: float64

pd.Series(
 [1, None, np.nan],
 dtype='Int64'
)

4

5 / 16

0 1
1 <NA>
2 <NA>
dtype: Int64

pd.Series(
 ["One", None, np.nan],
 dtype='string'
)

0 One
1 <NA>
2 <NA>
dtype: string

Letztendlich läuft es darauf hinaus, dass in DataFrame-Spalten mit Gleitzahl Datentyp
np.nan verwendet werden sollte, in Spalten mit Datums-/Zeitangaben pd.NaT und in
Spalten mit nicht-numerischen Datentypen pd.NA oder None.

Fehlwerte erkennen
In der Praxis ist es wichtig, Fehlwerte zu erkennen, um sie korrekt behandeln zu können.
Ein einfaches Beispiel wäre es die Daten so zu filtern, dass nur die Zeilen mit
Fehlwerten in einer bestimmten Spalte übrig bleiben. Tatsächlich ist eine dafür
notwendige Prüfung aber nicht wie vielleicht erwartet mit dem == Operator möglich,
sondern muss mit der Methode isna() durchgeführt werden.

pd.Series([1, None, np.nan, pd.NA]) == pd.NA

0 False
1 False
2 False
3 False
dtype: bool

pd.Series([1, None, np.nan, pd.NA]).isna()

0 False
1 True
2 True
3 True
dtype: bool

5

6 / 16

Die Methode isna() gibt für jeden Wert in der Serie True zurück, wenn der Wert ein
Fehlwert ist, und False, wenn der Wert ein gültiger Wert ist. Das Gegenstück dazu ist die
Methode notna(). So könnten wir also alle Zeilen aus unserem AirBnB Datensatz filtern,
in denen die Spalte host_name fehlende Werte enthält. Allerdings erzeugen wir uns
vorerst wieder einen Teildatensatz, um die Ausgabe übersichtlich zu halten.

df2 = df.loc[[1, 100, 2, 210, 3, 102049], ['host name', 'price']] # Wähle
Zeilen/Spalten
df2.reset_index(drop=True, inplace=True) # Setze Index zurück
df2 = df2.assign(
 host = df2['host name'].astype('string'), # Konvertiere in String
 price = df2['price'].str[1:].astype(float) # Entferne $ und konvertiere in
Float
)
df2.drop(columns='host name', inplace=True) # Lösche Spalte
df2

 price host
0 142.0 Jenna
1 739.0 <NA>
2 620.0 Elise
3 NaN Ryan
4 368.0 Garry
5 NaN <NA>

df2[df2['host'].isna()]

 price host
1 739.0 <NA>
5 NaN <NA>

df2[df2['host'].notna()]

 price host
0 142.0 Jenna
2 620.0 Elise
3 NaN Ryan
4 368.0 Garry

Es muss übrigens auch klar sein, dass die Fehlwerte beim Filtern so auch immer
separat gehandhabt werden müssen. Das wird deutlich, wenn wir die Daten hier mal in
vermeintlich zwei Teile trennen, indem wir einmal nach host == Jenna und einmal nach
host != Jenna filtern. Man mag erwarten, dass jede Zeile entweder in der ersten oder in

6

7 / 16

der zweiten Bedingung enthalten ist, da sie ja entweder Jenna als host haben oder nicht.
Wie wir aber sehen, schließt keine der beiden Bedinungen die Fehlwerte mit ein. Wir
erhalten so also quasi nur zwei von drei Teilen der Daten, wobei der dritte Teil der mit
den Fehlwerten ist:

Teil 1
df2[df2['host'] == 'Jenna']

 price host
0 142.0 Jenna

Teil 2
df2[df2['host'] != 'Jenna']

 price host
2 620.0 Elise
3 NaN Ryan
4 368.0 Garry

Teil 3
df2[df2['host'].isna()]

 price host
1 739.0 <NA>
5 NaN <NA>

Falls also das Ziel sein sollte alle Zeilen (auch die mit Fehlwerten) außer denen zu
behalten, die nicht Jenna als host haben, dann müsste die Bedingung die Fehlwerte
explizit mit einschließen. Das geht z.B. so:

behalten = (df2['host'] != 'Jenna') | df2['host'].isna()
df2[behalten]

 price host
1 739.0 <NA>
2 620.0 Elise
3 NaN Ryan
4 368.0 Garry
5 NaN <NA>

7

8 / 16

 Was ist mit isnull()?

Neben der hier gezeigten .isna() Methode gibt es auch die Methode .isnull().
Beide sind in Pandas identisch und können synonym verwendet werden. Gleiches
gilt für die Methoden .notna() und .notnull(). In diesem Blogpost gibt es etwas
mehr Details dazu warum das so ist.

Fehlwerte entfernen
Eine einfache Möglichkeit, um mit Fehlwerten umzugehen, ist es, sie einfach zu
entfernen. Da wir gerade .notna() kennengelernt haben, könnten wir damit schlichtweg
filtern. Allerdings gibt es auch eine Methode dropna(), die alle Zeilen mit Fehlwerten
entfernt und dabei einfacher und flexibler ist. Das Argument how= kann entweder 'any'
sein (=Standardwert), um Zeilen mit mindestens einem Fehlwert zu entfernen, oder
'all', um nur Zeilen zu entfernen, die ausschließlich aus Fehlwerten bestehen. Mit dem
Argument subset= können wir auch explizit angeben, in welchen Spalten nach
Fehlwerten gesucht werden soll.

df2.dropna(how='any')

 price host
0 142.0 Jenna
2 620.0 Elise
4 368.0 Garry

df2.dropna(how='all')

 price host
0 142.0 Jenna
1 739.0 <NA>
2 620.0 Elise
3 NaN Ryan
4 368.0 Garry

df2.dropna(subset=['host'])

 price host
0 142.0 Jenna
2 620.0 Elise

8

https://datascience.stackexchange.com/a/37879

9 / 16

3 NaN Ryan
4 368.0 Garry

Übrigens hat auch diese Methode ein axis= Argument. Während also standardmäßig mit
axis=0 die Zeilen entfernt werden, können wir mit axis=1 auch Spalten entfernen, die
Fehlwerte enthalten. Schließlich gibt es sogar ein thresh= Argument, mit dem wir
angeben können, wie viele Fehlwerte in einer Zeile/Spalte maximal enthalten sein
dürfen, damit sie nicht entfernt wird. So können wir demnach auch zwischen den
Extremen how='any' und how='all' noch eine Zwischenlösung finden.

Fehlwerte ersetzen
Eine andere Möglichkeit, mit Fehlwerten umzugehen, ist es, sie durch einen anderen
Wert zu ersetzen. Dafür gibt es die Methode fillna(), die den Fehlwert durch einen
anderen Wert ersetzt. Das Argument value= gibt an, durch welchen Wert ersetzt werden
soll. Gibt man nur einen Wert an, so wird jeder Fehlwert in der Serie/Spalte/Zeile bzw.
dem gesamten DataFrame durch diesen Wert ersetzt. Gibt man ein Dictionary an, so
können auch unterschiedliche Werte für unterschiedliche Spalten angegeben werden.

df2.fillna(value='Unbekannt')

#

 price host
0 142.0 Jenna
1 739.0 Unbekannt
2 620.0 Elise
3 Unbekannt Ryan
4 368.0 Garry
5 Unbekannt Unbekannt

na_ersatz = {'host': 'Unbekannt'}
df2.fillna(value=na_ersatz)

#

 price host
0 142.0 Jenna
1 739.0 Unbekannt
2 620.0 Elise

9

10 / 16

3 NaN Ryan
4 368.0 Garry
5 NaN Unbekannt

na_ersatz = {
 'host': 'Unbekannt',
 'price': 0
}
df2.fillna(value=na_ersatz)

 price host
0 142.0 Jenna
1 739.0 Unbekannt
2 620.0 Elise
3 0.0 Ryan
4 368.0 Garry
5 0.0 Unbekannt

Anstatt Werte vorzugeben, können wir auch die Methode ffill() (frontfill) oder bfill()
(backfill) verwenden, um Fehlwerte durch den vorherigen bzw. nächsten Wert zu
ersetzen. Diese Methoden können entweder auf den gesamten DataFrame angewendet
werden oder auf eine spezifische Spalte.

df2.ffill()

 price host
0 142.0 Jenna
1 739.0 Jenna
2 620.0 Elise
3 620.0 Ryan
4 368.0 Garry
5 368.0 Garry

df2.bfill()

 price host
0 142.0 Jenna
1 739.0 Elise
2 620.0 Elise
3 368.0 Ryan
4 368.0 Garry
5 NaN <NA>

10

11 / 16

df2['host'].ffill()

0 Jenna
1 Jenna
2 Elise
3 Ryan
4 Garry
5 Garry
Name: host, dtype: string

Praxistipp
Die oben genannten Funktionen ersetzen Fehlwerte, die bereits korrekt als solche in den
Daten definiert sind. In der Praxis kommt es aber regelmäßig vor, dass statt Fehlwerten
leere Strings oder Strings wie 'NA' oder 'missing' verwendet werden. Diese werden von
den Funktionen nicht als Fehlwerte erkannt und daher auch nicht ersetzt. Um solche
Werte zu erkennen und zu ersetzen, können wir die Methode replace() verwenden.
Diese Methode ersetzt Werte in einer Serie/Spalte/Zeile bzw. dem gesamten DataFrame
durch andere Werte. Das erste Argument to_replace= gibt an, welcher Wert ersetzt
werden soll, und das zweite Argument value= gibt an, durch welchen Wert ersetzt
werden soll.

dat = ['Value1', 'Value2', '', 'NA', 'missing', None, np.nan, pd.NA, 'Value3']
auchfehlwerte = ['', 'NA', 'missing']

#
pd.Series(dat)

#

0 Value1
1 Value2
2
3 NA
4 missing
5 None
6 NaN
7 <NA>
8 Value3
dtype: object

11

12 / 16

(
 pd.Series(dat)
 .fillna(value=pd.NA)
)
#

0 Value1
1 Value2
2
3 NA
4 missing
5 <NA>
6 <NA>
7 <NA>
8 Value3
dtype: object

(
 pd.Series(dat).
 replace(auchfehlwerte, pd.NA).
 fillna(value=pd.NA)
)

0 Value1
1 Value2
2 <NA>
3 <NA>
4 <NA>
5 <NA>
6 <NA>
7 <NA>
8 Value3
dtype: object

Mehr über Fehlwerte erfahren
Prinzipiell wissen wir nun, dass wir Fehlwerte erkennen bzw. filtern können. Wir wissen
auch, wie wir sie entfernen oder ersetzen können. In der Regel ist es aber auch wichtig
zu wissen, wie viele Fehlwerte in den Daten enthalten sind und wo sie sich befinden. Um
dies zu erfahren kann beispielsweise schlichtweg die .info() Methode verwendet
werden, da diese neben Dtype auch den Non-Null Count pro Spalte ausgibt. Alternativ
können wir auch die .isna() Methode verwenden, um zu zählen, wie viele Fehlwerte in
jeder Spalte enthalten sind. Versucht man nämlich die .sum() Methode auf boolean
Werte anzuwenden, so wird True als 1 und False als 0 interpretiert. Da die .isna()

12

13 / 16

Methode True für Fehlwerte und False für gültige Werte zurückgibt, können wir so die
Anzahl der Fehlwerte in jeder Spalte zählen.

df2.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6 entries, 0 to 5
Data columns (total 2 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 price 4 non-null float64
 1 host 4 non-null string
dtypes: float64(1), string(1)
memory usage: 228.0 bytes

pd.Series([True, False, True]).sum()

np.int64(2)

df2.isna().sum()

price 2
host 2
dtype: int64

Wer es noch genauer wissen will, kann auch das Modul missingno verwenden, welches
speziell für die Visualisierung von Fehlwerten entwickelt wurde. Dieses Modul muss
allerdings erst installiert werden (siehe Kapitel 4.A Module installieren).

So kann beispielsweise eine sogenannte nullity matrix geplottet werden, die die
Verteilung der Fehlwerte in einem DataFrame visualisiert. Schwarz bedeutet dabei, dass
ein Wert vorhanden ist und weiß bedeutet, dass ein Wert fehlt. Auf diese Weise
bekommen wir einen schnellen Überblick über die Verteilung der Fehlwerte in allen
Spalten unseres großen AirBnB Datensatzes. Das Modul bietet noch weitere solcher
Visualisierungen wie msno.bar() und msno.heatmap(), die wir hier aber nicht weiter
behandeln.

import missingno as msno
msno.matrix(df)

13

https://github.com/ResidentMario/missingno?tab=readme-ov-file#missingno-----
https://github.com/ResidentMario/missingno?tab=readme-ov-file#missingno-----

14 / 16

Wie gehen Funktionen mit Fehlwerten um?
Es soll an dieser Stelle einmal explizit darauf hingewiesen werden, dass Pandas
Fehlwerte in der Regel automatisch ignoriert. Das bedeutet, dass die meisten
Funktionen, die auf Pandas-Objekten angewendet werden, standardmäßig Fehlwerte
ausschließen. Das ist in den meisten Fällen auch sinnvoll, da Fehlwerte oft nicht sinnvoll
interpretiert werden können und die meisten Funktionen daher nicht sinnvoll mit ihnen
umgehen können. Das bedeutet aber auch, dass ggf. unbemerkt Fehlwerte in den Daten
enthalten sind, die zu unerwarteten Ergebnissen führen können. Schließlich erkennt
man beim Betrachten der folgenden zwei Mittelwerte nicht, dass in der zweiten Serie ein
Fehlwert enthalten ist. Um sicherzustellen, dass Fehlwerte nicht ignoriert werden,
können wir die Methode skipna=False verwenden. Diese Methode wird in vielen Pandas-
Funktionen unterstützt und sorgt dafür, dass Fehlwerte nicht ignoriert werden. Das
bedeutet, dass die Funktionen np.mean() und np.sum() dann np.nan zurückgeben, wenn
Fehlwerte in den Daten enthalten sind.

x = pd.Series([11, 12, 13])
x.mean()

np.float64(12.0)

y = pd.Series([11, 12, np.nan])
y.mean()

np.float64(11.5)

14

15 / 16

y = pd.Series([11, 12, np.nan])
y.mean(skipna=False)

np.float64(nan)

 Bei Numpy ist das anders

Bei Numpy ist das Verhalten anders. Hier wird z.B. der Mittelwert eines Arrays, der
einen Fehlwert enthält, immer np.nan sein. Das bedeutet, dass Numpy-Funktionen
standardmäßig Fehlwerte nicht ignorieren. Das ist ein wichtiger Unterschied zu
Pandas. Bei np.mean(np.array([11, 12, np.nan])) wird also immer np.nan
zurückgegeben. Es gibt auch kein Argument wie skipna=False, um dieses Verhalten
zu ändern. Stattdessen gibt es die separate Funktion np.nanmean(), die explizit
Fehlwerte ignoriert.

 Weitere Ressourcen

• Pandas Crashkurs - fehlende Daten / Missing Values - Video 5/8 kompletter Kurs
auf deutsch/german

Übungen
Berechne jeweils den Durchschnittspreis (Spalte price) aller AirBnB Unterkünfte in df2
für folgende Szenarien und gib sie gerundet auf keine Nachkommastelle an.

• ___ $ ist der Durchschnittspreis.
• ___ $ ist der Durchschnittspreis, nachdem alle Zeilen gelöscht wurden, in denen der

Hostname fehlt.
• ___ $ ist der Durchschnittspreis, nachdem alle Fehlwerte in der Spalte ‘price’ durch 0

ersetzt wurden.
• ___ $ ist der Durchschnittspreis, nachdem alle Zeilen gelöscht wurden, in denen der

Hostname fehlt und alle Fehlwerte in der Spalte ‘price’ durch 0 ersetzt wurden.

Welche Spalte in unserem AirBnB Datensatz enthält die meisten Fehlwerte?

• Spaltenname: _______

Schau dir folgenden Python Code an und versuche durch Nachschlagen und
Ausprobieren auch die angewandten Methoden zu verstehen, die wir in diesem Kurs
noch nicht besprochen haben. Welche der folgenden Fragen wird mit diesem Code
beantwortet?

15

https://youtu.be/1Q7WH_WUI44?si=U0VtmAT4KE7GrQsu
https://youtu.be/1Q7WH_WUI44?si=U0VtmAT4KE7GrQsu

16 / 16

x = df.isna().sum().to_frame()
x[x[0] == 0].shape[0]

• (A) Wie viele Spalten haben mindestens einen Fehlwert?
• (B) Wie viele Spalten haben keinen Fehlwert?
• (C) Wie viele Spalten haben genau einen Fehlwert?
• (D) Wie viele Spalten haben ausschließlich Fehlwerte?

16

	Fehlwerte in Python/Numpy/Pandas
	Fehlwerte erkennen
	Fehlwerte entfernen
	Fehlwerte ersetzen
	Praxistipp

	Mehr über Fehlwerte erfahren
	Wie gehen Funktionen mit Fehlwerten um?
	Übungen

