
1 / 13

Gruppieren & Aggregieren
by Woche 10

Wie in den vorigen Kapiteln setzen wir zunächst wieder Pandas Optionen und
importieren unseren AirBnB Datensatz.

import numpy as np
import pandas as pd

pd.set_option('display.max_columns', 4)
pd.set_option('display.max_rows', 6)
pd.set_option('display.max_colwidth', 20)

csv_url = 'https://github.com/SchmidtPaul/ExampleData/raw/main/airbnb_open_
data/Airbnb_Open_Data.csv'
df = pd.read_csv(csv_url, dtype={25: str})

Darüber hinaus und basierend auf dem Wissen aus den letzten Kapiteln formatieren wir
aber den importierten Datensatz auch ein wenig und erzeugen uns dann auch hier
wieder einen übersichtlichen Teildatensatz, um die Gruppierung und Aggregation zu
üben.

# Formatiere Spalten
df = df.assign(
  # Konvertiere zu category
  neighbourhood = df['neighbourhood'].astype('category'),
  room_type     =     df['room type'].astype('category'),
  # Für service fee und price: Erst $ und , entfernen, dann konvertieren
  fee   = df['service fee'].str.replace('$', '').str.replace(',',
'').astype(float), 
  price =       df['price'].str.replace('$', '').str.replace(',',
'').astype(float) 
)

# Lösche Spalte
df.drop(columns=['room type', 'service fee'], inplace=True)

# Wähle Zeilen und Spalten für Teildatensatz
df2 = df.loc[
  [1, 101, 2, 24262, 233, 493, 45, 619],        
  ['neighbourhood', 'room_type', 'price', 'fee']
]

1



2 / 13

# Setze Index zurück
df2.reset_index(drop=True, inplace=True)

# dies wird erst weiter unten erklärt
df2['neighbourhood'] = df2['neighbourhood'].cat.remove_unused_categories()
df2['room_type']     =     df2['room_type'].cat.remove_unused_categories()

df2

  neighbourhood        room_type  price    fee
0       Midtown  Entire home/apt  142.0   28.0
1        Harlem     Private room  913.0  183.0
2        Harlem     Private room  620.0  124.0
3       Midtown  Entire home/apt    NaN  105.0
4       Midtown  Entire home/apt  588.0  118.0
5        Harlem      Shared room   67.0   13.0
6        Harlem  Entire home/apt   62.0   12.0
7       Midtown     Private room  578.0  116.0

In diesem Kapitel lernen wir, wie wir Daten gruppieren und aggregieren können. In
gewisser Hinsicht erzeugen wir so erstmals in diesem Kurs Ergebnisse, die zumindest in
bestimmten Projekten als vollwertiges Ergebnise/ vollwertige Analyse betrachtet werden.

Die .groupby() Methode
Wozu?
Wir wissen bereits, dass wir beispielsweise den Mittelwert einer Spalte berechnen
können, indem wir die Methode .mean() auf eine Spalte anwenden.

df2['price'].mean()

np.float64(424.2857142857143)

Ebenfalls wissen wir, wie wir die Daten filtern können, um nur bestimmte Zeilen zu
betrachten. Demnach könnten wir in unserem Beispieldatensatz df2 manuell den
Durchschnittspreis pro Nachbarschaft berechnen, indem wir die Preise der einzelnen
Nachbarschaften filtern und dann den Durchschnitt berechnen.

filter1 = df2['neighbourhood'] == 'Midtown'
df2.loc[filter1, 'price'].mean()

np.float64(436.0)

2



3 / 13

filter2 = df2['neighbourhood'] == 'Harlem'
df2.loc[filter2, 'price'].mean()

np.float64(415.5)

Genau hier kommt die .groupby() Methode ins Spiel. Sie ermöglicht es uns, die Daten
nach einer bestimmten Spalte zu gruppieren und dann eine Aggregationsfunktion auf
sämtliche Gruppen anzuwenden. Wir bräuchten also lediglich diesen deutlich kürzeren
Code zu schreiben - egal wie viele Nachbarschaften wir haben.

# Zwei Nachbarschaften in df2
df2.groupby('neighbourhood')['price'].mean()

neighbourhood
Harlem     415.5
Midtown    436.0
Name: price, dtype: float64

# 224 Nachbarschaften in df
df.groupby('neighbourhood')['price'].mean()

neighbourhood
Allerton           636.343750
Arden Heights      804.888889
Arrochar           625.764706
Arverne            652.125561
Astoria            639.035275
                      ...    
Windsor Terrace    579.784848
Woodhaven          630.518325
Woodlawn           587.137931
Woodrow            709.333333
Woodside           634.588336
Name: price, Length: 224, dtype: float64

Der Vorteil der .groupby() Methode ist also offensichtlich und die Möglichkeiten sind
vielfältig. Bevor wir aber andere Funktionen etc. ausprobieren, wollen wir nochmal kurz
einen Schritt zurück gehen und uns klar machen, was die .groupby() Methode genau
macht.

3



4 / 13

Wie?
Die .groupby() Methode erzeugt ein GroupBy Objekt, das wir uns als eine Art “Plan”
vorstellen können, wie die Daten gruppiert werden sollen. Dieses Objekt ist also nicht
mehr nur ein DataFrame, sondern eine spezielle Art von Objekt, das wir dann weiter
bearbeiten können.

df2_pro_nb = df2.groupby('neighbourhood')
df2_pro_nb

<pandas.core.groupby.generic.DataFrameGroupBy object at 0x000001E4CF5D82D0>

Das Objekt selbst “weiß” also dauerhaft, dass die Daten nach der Spalte neighbourhood
gruppiert wurden. Egal welche Methode wir auf das Objekt anwenden, es wird immer die
Gruppierung berücksichtigen.

# Anzahl Zeilen
df2_pro_nb.size()

neighbourhood
Harlem     4
Midtown    4
dtype: int64

# Höchster Preis
df2_pro_nb['price'].max()

neighbourhood
Harlem     913.0
Midtown    588.0
Name: price, dtype: float64

# Anzahl einzigartiger Werte
df2_pro_nb['room_type'].nunique()

neighbourhood
Harlem     3
Midtown    2
Name: room_type, dtype: int64

4



5 / 13

Aus einem gruppierten Objekt können wir auch die Daten von einzelnen Gruppen
auswählen, indem wir die .get_group() Methode verwenden. Diese Methode erwartet
den Namen der Gruppe als Argument und gibt dann die entsprechenden Zeilen zurück.

df2_pro_nb.get_group('Midtown')

  neighbourhood        room_type  price    fee
0       Midtown  Entire home/apt  142.0   28.0
3       Midtown  Entire home/apt    NaN  105.0
4       Midtown  Entire home/apt  588.0  118.0
7       Midtown     Private room  578.0  116.0

5



6 / 13

 Hinweis zu .cat.remove_unused_categories() von oben

Zu Beginn des Kapitels wurde beim Erzeugen von df2 die
Methode .cat.remove_unused_categories() verwendet. Diese Methode entfernt
Kategorien/Gruppierungsstufen, die in einem DataFrame nicht mehr vorkommen.
Dies passiert nämlich nicht automatisch, nur weil wir einen DataFrame filtern. Um
das zu verdeutlichen einfach mal den Code von Anfang des Kapitels bis inklusive
df2.groupby('neighbourhood')['price'].mean() erneut ausführen, diesmal aber
ohne die Zeilen mit .cat.remove_unused_categories(). Das Ergebnis sieht dann so
aus:

neighbourhood
Allerton          NaN
Arden Heights     NaN
Arrochar          NaN
Arverne           NaN
Astoria           NaN
                   ..
Windsor Terrace   NaN
Woodhaven         NaN
Woodlawn          NaN
Woodrow           NaN
Woodside          NaN
Name: price, Length: 224, dtype: float64

Man kann es zwar nicht sehen, aber nur für die Nachbarschaften Harlem und
Midtown gäbe es den entsprechenden Mittelwert, während für alle anderen 222
Nachbarschaften keine Daten vorhanden waren, sodass der Mittelwert NaN ist. Der
Knackpunkt ist also, dass die Gruppierungsstufen in df2 noch alle 224
Nachbarschaften enthalten, obwohl nur zwei davon Daten enthalten. Dies ist eine
Besonderheit von Spalten mit dem Datentyp category, welche vor allem bei der
Gruppierung und Aggregation auffällt.

Anstatt die ungenutzen Kategorien eines DataFrames
via .cat.remove_unused_categories() zu entfernen hat man übrigens auch die
alternative Möglichkeit in der .groupby() Methode die Option observed=True zu
setzen. Dies führt auch dazu, dass nur die Kategorien berücksichtigt werden, die
tatsächlich in den Daten vorkommen.

Mehrere Werte-Spalten
Diese Berechnungen pro Gruppe können wir auch direkt für mehrere Spalten
durchführen. Anstatt also pro Nachbarschaft nur den Durschnittspreis zu berechnen,

6



7 / 13

können wir auch direkt die durchschnittliche Servicegebühr mitberechnen. Dazu
übergeben wir eben eine Liste von Spaltennamen an das gruppierende Objekt.

# Mit vorgruppiertem Objekt
df2_pro_nb[['price', 'fee']].mean()

#

               price    fee
neighbourhood              
Harlem         415.5  83.00
Midtown        436.0  91.75

# Mit Method Chaining
(
  df2
  .groupby('neighbourhood')
  [['price', 'fee']]
  .mean()
)

               price    fee
neighbourhood              
Harlem         415.5  83.00
Midtown        436.0  91.75

Mehrere Aggregationsfunktionen
Darüber hinaus ist es ebenfalls möglich, direkt mehrere Aggregationsfunktionen auf die
Daten anzuwenden. Dazu übergeben wir eine Liste von Funktionen (also mean(), min()
usw.) an die .agg() Methode. Es folgen zwei Möglichkeiten um pro Nachbarschaft für die
Spalte price den Mittelwert, das Minimum und das Maximum zu berechnen. Die erste
von beiden ist dem bisherigen vorgehen sehr ähnlich: Wir gruppieren, dann wählen wir
die Spalte aus und wenden schließlich einfach die .agg() Methode statt wie
bisher .mean() usw. an. Innerhalb der .agg() Methode übergeben wir dann eine Liste
von Funktionsnamen als Strings. Die zweite Möglichkeit zeigt, dass man aber auch das
auswählen der Spalte innerhalb der .agg() Methode machen kann. Man nutzt dann ein
Dictionary, in dem die Spaltennamen als Keys und die Funktionsnamen als Values
stehen.

7



8 / 13

(
  df2
  .groupby('neighbourhood')
  ['price']
  .agg(['mean', 'min', 'max'])
)

                mean    min    max
neighbourhood                     
Harlem         415.5   62.0  913.0
Midtown        436.0  142.0  588.0

(
  df2
  .groupby('neighbourhood')
  .agg({'price':['mean', 'min', 'max']})
)

               price              
                mean    min    max
neighbourhood                     
Harlem         415.5   62.0  913.0
Midtown        436.0  142.0  588.0

Ein Vorteil der zweiten Methode ist, dass man individuelle Funktionsnamen für jede
Spalte angeben kann.

(
  df2
  .groupby('neighbourhood')
  [['price', 'fee']]
  .agg(['min', 'max'])
)

               price          fee       
                 min    max   min    max
neighbourhood                           
Harlem          62.0  913.0  12.0  183.0
Midtown        142.0  588.0  28.0  118.0

#
(
  df2

8



9 / 13

  .groupby('neighbourhood')
  .agg({'price':['mean', 'min', 'max'], 'fee':'mean'})
)

               price                  fee
                mean    min    max   mean
neighbourhood                            
Harlem         415.5   62.0  913.0  83.00
Midtown        436.0  142.0  588.0  91.75

Die .describe() Methode
In der Praxis ist es tatsächlich die Regel sich direkt mehrere Lage-/Streuungsmaße für
die Daten ausgeben zu lassen. Anstatt sich eine Liste mit den gewünschten Funktionen
zu überlegen, kann aber auch einfach die .describe() Methode verwendet werden.
Diese Methode gibt standardmäßig die Anzahl der Werte, den Mittelwert, die
Standardabweichung, das Minimum, das 25%-Quantil, das Median, das 75%-Quantil
und das Maximum aus.

pd.set_option('display.max_columns', 8) # Damit alle Spalten angezeigt werden

df2_pro_nb['price'].describe() # alternativ:
df2_pro_nb.agg({'price':'describe'})

pd.set_option('display.max_columns', 4) # Zurücksetzen

               count   mean         std    min     25%    50%     75%    max
neighbourhood                                                               
Harlem           4.0  415.5  422.587663   62.0   65.75  343.5  693.25  913.0
Midtown          3.0  436.0  254.660558  142.0  360.00  578.0  583.00  588.0

Mehrere Grupperierungs-Spalten
Es können ebenso mehrere Spalten an die .groupby() Methode übergeben werden. In
diesem Fall wird die Gruppierung nach den Kombinationen der Werte in den Spalten
durchgeführt. Wir könnten also z.B. prüfen was die jeweils günstigste Unterkunft in einer
Nachbarschaft und einem Zimmertyp ist.

(
  df2
  .groupby(['neighbourhood', 'room_type'])
  ['price']

9



10 / 13

  .min()
)

neighbourhood  room_type      
Harlem         Entire home/apt     62.0
               Private room       620.0
               Shared room         67.0
Midtown        Entire home/apt    142.0
               Private room       578.0
               Shared room          NaN
Name: price, dtype: float64

(
  df2
  .groupby(['room_type', 'neighbourhood'])
  ['price']
  .min()
)

room_type        neighbourhood
Entire home/apt  Harlem            62.0
                 Midtown          142.0
Private room     Harlem           620.0
                 Midtown          578.0
Shared room      Harlem            67.0
                 Midtown            NaN
Name: price, dtype: float64

Weitere Details & Tipps
Es kann sinnvoll sein innerhalb von groupby() zusätzlich die Option as_index=False zu
setzen. Dies führt dazu, dass die Gruppierungs-Spalten nicht als Multi-Index im Ergebnis
auftauchen, sondern als normale Spalten.

(
  df2
  .groupby(['neighbourhood', 'room_type'], as_index=False)
  ['price']
  .min()
)

  neighbourhood        room_type  price
0        Harlem  Entire home/apt   62.0

10



11 / 13

1        Harlem     Private room  620.0
2        Harlem      Shared room   67.0
3       Midtown  Entire home/apt  142.0
4       Midtown     Private room  578.0
5       Midtown      Shared room    NaN

 Hinweis zu Multi-Index

Ein Multi-Index ist ein spezieller Index, bei dem die Index-Spalten mehrere Ebenen
haben. In diesem Fall - also bevor wir as_index=False genutzt haben - hatten wir also
zwei Ebenen, die Nachbarschaft und den Zimmertyp. In folgenden Kapiteln werden
wir noch detailierter auf Multi-Indizes eingehen.

Direkt beim Erzeugen dieser Tabellen mit verschiedenen deskriptiven Statistiken können
wir auch direkt die Spalten benennen anstatt die Standard/Funktionsnamen zu
verwenden:

(
  df2
  .groupby('neighbourhood', as_index=False)
  .agg(
    Durchschnittspreis = ('price', 'mean'),
    Günstigster = ('price', 'min'),
    Teuerster = ('price', 'max')
  )
)

  neighbourhood  Durchschnittspreis  Günstigster  Teuerster
0        Harlem               415.5         62.0      913.0
1       Midtown               436.0        142.0      588.0

Es ist auch möglich andere Funktionen als die Standardfunktionen zu verwenden.
Beispielsweise können wir den Median auch mit der Funktion np.median aus dem
NumPy Modul berechnen.

# Option 1
(
  df2
  .groupby('neighbourhood')
  ['price']
  .agg(['mean', np.median])
)

11



12 / 13

                mean  median
neighbourhood               
Harlem         415.5   343.5
Midtown        436.0   578.0

# Option 2

(
  df2
  .groupby('neighbourhood')
  .agg({'price':['mean', np.median]})
)

               price       
                mean median
neighbourhood              
Harlem         415.5  343.5
Midtown        436.0  578.0

Oft haben die Ergebnisse unnötig viele Nachkommastellen. Dies lässt sich mit
der .round() Methode beheben, welche einfach im Method Chaining nach der
Aggregation aufgerufen wird.

(
  df2
  .groupby('room_type')
  ['price']
  .agg(['mean', 'var'])
  
)

                       mean           var
room_type                                
Entire home/apt  264.000000  80332.000000
Private room     703.666667  33306.333333
Shared room       67.000000           NaN

(
  df2
  .groupby('room_type')
  ['price']
  .agg(['mean', 'var'])

12



13 / 13

  .round(1)
)

                  mean      var
room_type                      
Entire home/apt  264.0  80332.0
Private room     703.7  33306.3
Shared room       67.0      NaN

 Weitere Ressourcen

• Pandas Crashkurs - Daten gruppieren mit GroupBy - Video 6/8 kompletter Kurs
kostenlos deutsch/german

• 7 + 1 Pandas GROUP BY Tips – Great Tips & Tricks (Python Tutorial)

Übungen
Nutze den vollen Datensatz df um jeweils den Mittelwert, die Varianz und die Anzahl
Beobachungen des Preises pro Zimmertyp zu berechnen (ggf. gerundet auf eine
Nachkommastelle). Ergänze dann folgende Ergebnisse:

• _____ $ ist der Durchschnittspreis für ein Hotelzimmer. (Achtung, schreibe Punkt statt
Komma als Dezimaltrennzeichen!)

• Der Zimmertyp ‘Entire home/apt’ hat mit _____ Beobachtungen die meisten
Datenpunkte aller Zimmertypen im Datensatz.

• Die Preise des Zimmertyps ‘ _______ room’ schwanken/variieren am wenigsten.

Basierend auf df2: Berechne pro Kombination aus Nachbarschaft und Zimmertyp (immer
gerundet auf keine Nachkommastelle) den Mittelwert für den Preis, sowie das Minimum
und Maximum der Servicegebühr.

• (A) Geschafft

13

https://youtu.be/OJI-wEW45mg?si=mKPuoROTNjHAIqcs
https://youtu.be/OJI-wEW45mg?si=mKPuoROTNjHAIqcs
https://youtu.be/Y0M4J8MtDaQ?si=Bx0PhHgBw5DXOoex

	Die .groupby() Methode
	Wozu?
	Wie?

	Mehrere Werte-Spalten
	Mehrere Aggregationsfunktionen
	Die .describe() Methode

	Mehrere Grupperierungs-Spalten
	Weitere Details & Tipps
	Übungen

