< BioMath

Gruppieren & Aggregieren

by Woche 10

Wie in den vorigen Kapiteln setzen wir zunachst wieder Pandas Optionen und
importieren unseren AirBnB Datensatz.

import numpy as np
import pandas as pd

pd.set option('display.max_columns', 4)
pd.set option('display.max rows', 6)
pd.set option('display.max_colwidth', 20)

csv_url = 'https://github.com/SchmidtPaul/ExampleData/raw/main/airbnb open
data/Airbnb Open Data.csv'
df = pd.read csv(csv_url, dtype={25: str})

Daruber hinaus und basierend auf dem Wissen aus den letzten Kapiteln formatieren wir
aber den importierten Datensatz auch ein wenig und erzeugen uns dann auch hier
wieder einen Ubersichtlichen Teildatensatz, um die Gruppierung und Aggregation zu
uben.

Formatiere Spalten
df = df.assign(
Konvertiere zu category
neighbourhood = df['neighbourhood'].astype('category'),

room_type = df['room type'].astype('category'),

Flr service fee und price: Erst $ und , entfernen, dann konvertieren

fee = df['service fee'].str.replace('$', '').str.replace(',",
'').astype(float),

price = df['price'].str.replace('$', '').str.replace(',"’,

''").astype(float)
)

LOosche Spalte
df.drop(columns=["'room type', 'service fee'], inplace=True)

Wahle Zeilen und Spalten fir Teildatensatz

df2 = df.loc[
[1, 101, 2, 24262, 233, 493, 45, 619],
['neighbourhood', 'room type', 'price', 'fee'l

1/13

< BioMath

Setze Index zuruck
df2.reset index(drop=True, inplace=True)

dies wird erst weiter unten erklart
df2['neighbourhood'] = df2['neighbourhood'].cat.remove unused categories()

df2['room type'] = df2['room type'].cat.remove unused categories()
df2

neighbourhood room type price fee
0 Midtown Entire home/apt 142.0 28.0
1 Harlem Private room 913.0 183.0
2 Harlem Private room 620.0 124.0
3 Midtown Entire home/apt NaN 105.0
4 Midtown Entire home/apt 588.0 118.0
5 Harlem Shared room 67.0 13.0
6 Harlem Entire home/apt 62.0 12.0
7 Midtown Private room 578.0 116.0

In diesem Kapitel lernen wir, wie wir Daten gruppieren und aggregieren kénnen. In
gewisser Hinsicht erzeugen wir so erstmals in diesem Kurs Ergebnisse, die zumindest in
bestimmten Projekten als vollwertiges Ergebnise/ vollwertige Analyse betrachtet werden.

Die .groupby() Methode
Wozu?

Wir wissen bereits, dass wir beispielsweise den Mittelwert einer Spalte berechnen
kénnen, indem wir die Methode .mean() auf eine Spalte anwenden.

df2['price'].mean()

np.float64(424.2857142857143)

Ebenfalls wissen wir, wie wir die Daten filtern kdnnen, um nur bestimmte Zeilen zu
betrachten. Demnach kdnnten wir in unserem Beispieldatensatz df2 manuell den
Durchschnittspreis pro Nachbarschaft berechnen, indem wir die Preise der einzelnen
Nachbarschaften filtern und dann den Durchschnitt berechnen.

filterl = df2['neighbourhood'] == 'Midtown'
df2.loc[filterl, 'price'].mean()

np.float64(436.0)

2/13

) BioMath

filter2 = df2['neighbourhood'] == 'Harlem'
df2.loc[filter2, 'price'].mean()

np.float64(415.5)

Genau hier kommt die .groupby () Methode ins Spiel. Sie ermdglicht es uns, die Daten
nach einer bestimmten Spalte zu gruppieren und dann eine Aggregationsfunktion auf
samtliche Gruppen anzuwenden. Wir brauchten also lediglich diesen deutlich kiirzeren
Code zu schreiben - egal wie viele Nachbarschaften wir haben.

df2.groupby('neighbourhood')['price'].mean()

neighbourhood

Harlem 415.5

Midtown 436.0

Name: price, dtype: float64

df.groupby('neighbourhood')['price'].mean()

neighbourhood

Allerton 636.343750
Arden Heights 804.888889
Arrochar 625.764706
Arverne 652.125561
Astoria 639.035275

Windsor Terrace 579.784848

Woodhaven 630.518325
Woodlawn 587.137931
Woodrow 709.333333
Woodside 634.588336

Name: price, Length: 224, dtype: float64

Der Vorteil der .groupby () Methode ist also offensichtlich und die Mdglichkeiten sind
vielfaltig. Bevor wir aber andere Funktionen etc. ausprobieren, wollen wir nochmal kurz
einen Schritt zurlick gehen und uns klar machen, was die .groupby () Methode genau
macht.

3/13

) BioMath

Wie?

Die .groupby() Methode erzeugt ein GroupBy Objekt, das wir uns als eine Art “Plan”
vorstellen kénnen, wie die Daten gruppiert werden sollen. Dieses Obijekt ist also nicht
mehr nur ein DataFrame, sondern eine spezielle Art von Objekt, das wir dann weiter
bearbeiten kdnnen.

df2 pro_nb = df2.groupby('neighbourhood")
df2 pro _nb

<pandas.core.groupby.generic.DataFrameGroupBy object at Ox000001E4CF5D82D0O>

Das Obijekt selbst “weild” also dauerhaft, dass die Daten nach der Spalte neighbourhood
gruppiert wurden. Egal welche Methode wir auf das Objekt anwenden, es wird immer die
Gruppierung berticksichtigen.

df2 pro _nb.size()

neighbourhood
Harlem 4
Midtown 4
dtype: int64

df2 pro nb['price'].max()

neighbourhood

Harlem 913.0

Midtown 588.0

Name: price, dtype: float64

df2 _pro_nb['room type'].nunique()

neighbourhood
Harlem 3
Midtown 2
Name: room type, dtype: int64

4/13

) BioMath

Aus einem gruppierten Objekt kdnnen wir auch die Daten von einzelnen Gruppen
auswahlen, indem wir die .get group() Methode verwenden. Diese Methode erwartet
den Namen der Gruppe als Argument und gibt dann die entsprechenden Zeilen zurick.

df2 pro _nb.get group('Midtown')

neighbourhood room type price fee
Midtown Entire home/apt 142.0 28.0
Midtown Entire home/apt NaN 105.0
Midtown Entire home/apt 588.0 118.0
Midtown Private room 578.0 116.0

~N b Wwo

5/13

) BioMath

1 Hinweis zu .cat.remove unused categories() von oben

Zu Beginn des Kapitels wurde beim Erzeugen von df2 die

Methode .cat.remove unused categories() verwendet. Diese Methode entfernt
Kategorien/Gruppierungsstufen, die in einem DataFrame nicht mehr vorkommen.
Dies passiert namlich nicht automatisch, nur weil wir einen DataFrame filtern. Um
das zu verdeutlichen einfach mal den Code von Anfang des Kapitels bis inklusive
df2.groupby('neighbourhood')['price'].mean() erneut ausflhren, diesmal aber
ohne die Zeilen mit .cat.remove unused categories(). Das Ergebnis sieht dann so
aus:

neighbourhood

Allerton NaN
Arden Heights NaN
Arrochar NaN
Arverne NaN
Astoria NaN

Windsor Terrace NaN

Woodhaven NaN
Woodlawn NaN
Woodrow NaN
Woodside NaN

Name: price, Length: 224, dtype: float64

Man kann es zwar nicht sehen, aber nur fur die Nachbarschaften Harlem und
Midtown gabe es den entsprechenden Mittelwert, wahrend fir alle anderen 222
Nachbarschaften keine Daten vorhanden waren, sodass der Mittelwert NaN ist. Der
Knackpunkt ist also, dass die Gruppierungsstufen in df2 noch alle 224
Nachbarschaften enthalten, obwohl nur zwei davon Daten enthalten. Dies ist eine
Besonderheit von Spalten mit dem Datentyp category, welche vor allem bei der
Gruppierung und Aggregation auffallt.

Anstatt die ungenutzen Kategorien eines DataFrames

via .cat.remove unused categories() zu entfernen hat man Ubrigens auch die
alternative Méglichkeit in der .groupby () Methode die Option observed=True zu
setzen. Dies fiihrt auch dazu, dass nur die Kategorien berticksichtigt werden, die
tatsachlich in den Daten vorkommen.

Mehrere Werte-Spalten

Diese Berechnungen pro Gruppe kénnen wir auch direkt fir mehrere Spalten
durchfihren. Anstatt also pro Nachbarschaft nur den Durschnittspreis zu berechnen,

6/13

) BioMath

kénnen wir auch direkt die durchschnittliche Servicegebihr mitberechnen. Dazu
Ubergeben wir eben eine Liste von Spaltennamen an das gruppierende Obijekt.

df2 pro nb[['price', 'fee'll.mean()

price fee
neighbourhood
Harlem 415.5 83.00
Midtown 436.0 91.75
(
df2
.groupby('neighbourhood')
[['price', 'fee'll
.mean()
)
price fee
neighbourhood
Harlem 415.5 83.00
Midtown 436.0 91.75

Mehrere Aggregationsfunktionen

Daruber hinaus ist es ebenfalls moglich, direkt mehrere Aggregationsfunktionen auf die
Daten anzuwenden. Dazu Ubergeben wir eine Liste von Funktionen (also mean(), min()
usw.) an die .agg() Methode. Es folgen zwei Mdglichkeiten um pro Nachbarschaft fir die
Spalte price den Mittelwert, das Minimum und das Maximum zu berechnen. Die erste
von beiden ist dem bisherigen vorgehen sehr dhnlich: Wir gruppieren, dann wahlen wir
die Spalte aus und wenden schlielilich einfach die .agg() Methode statt wie

bisher .mean() usw. an. Innerhalb der .agg() Methode Ubergeben wir dann eine Liste
von Funktionsnamen als Strings. Die zweite Moglichkeit zeigt, dass man aber auch das
auswahlen der Spalte innerhalb der .agg() Methode machen kann. Man nutzt dann ein
Dictionary, in dem die Spaltennamen als Keys und die Funktionsnamen als Values
stehen.

7/13

< BioMath

(

df2
.groupby('neighbourhood")
['price'l
.agg(['mean', 'min', 'max'])
)
mean min max
neighbourhood
Harlem 415.5 62.0 913.0
Midtown 436.0 142.0 588.0
(
df2
.groupby('neighbourhood')
.agg({'price':['mean', 'min', 'max']l})
)
price
mean min max
neighbourhood
Harlem 415.5 62.0 913.0
Midtown 436.0 142.0 588.0

Ein Vorteil der zweiten Methode ist, dass man individuelle Funktionsnamen fir jede
Spalte angeben kann.

(
df2
.groupby ('neighbourhood")
[['price', 'fee'll

.agg(['min', 'max'l])

)
price fee
min max min max

neighbourhood
Harlem 62.0 913.0 12.0 183.0
Midtown 142.0 588.0 28.0 118.0
#
(

df2

8/13

< BioMath

.groupby ('neighbourhood")

.agg({'price':['mean', 'min', 'max'], 'fee':'mean'})
)
price fee
mean min max mean
neighbourhood
Harlem 415.5 62.0 913.0 83.00
Midtown 436.0 142.0 588.0 91.75

Die .describe() Methode

In der Praxis ist es tatsachlich die Regel sich direkt mehrere Lage-/Streuungsmale fur
die Daten ausgeben zu lassen. Anstatt sich eine Liste mit den gewilinschten Funktionen
zu Uberlegen, kann aber auch einfach die .describe() Methode verwendet werden.
Diese Methode gibt standardmaRig die Anzahl der Werte, den Mittelwert, die
Standardabweichung, das Minimum, das 25%-Quantil, das Median, das 75%-Quantil
und das Maximum aus.

pd.set option('display.max_columns', 8) # Damit alle Spalten angezeigt werden

df2 pro nb['price'].describe() # alternativ:
df2 pro nb.agg({'price':'describe'})

pd.set option('display.max columns', 4) # Zurucksetzen

count mean std min 25% 50% 75% max
neighbourhood
Harlem 4.0 415.5 422.587663 62.0 65.75 343.5 693.25 913.0
Midtown 3.0 436.0 254.660558 142.0 360.00 578.0 583.00 588.0

Mehrere Grupperierungs-Spalten

Es kdnnen ebenso mehrere Spalten an die .groupby () Methode Gbergeben werden. In
diesem Fall wird die Gruppierung nach den Kombinationen der Werte in den Spalten
durchgefuhrt. Wir kbnnten also z.B. prifen was die jeweils gunstigste Unterkunft in einer
Nachbarschaft und einem Zimmertyp ist.

(
df2
.groupby (['neighbourhood', 'room type'l])
['price'l

9/13

< BioMath

.min()

neighbourhood room type

Harlem Entire home/apt 62.0
Private room 620.0
Shared room 67.0
Midtown Entire home/apt 142.0
Private room 578.0
Shared room NaN

Name: price, dtype: float64

(

df2
.groupby(['room type', 'neighbourhood'])
['price']
.min()
)
room_type neighbourhood
Entire home/apt Harlem 62.0
Midtown 142.0
Private room Harlem 620.0
Midtown 578.0
Shared room Harlem 67.0
Midtown NaN

Name: price, dtype: float64

Weitere Details & Tipps

Es kann sinnvoll sein innerhalb von groupby () zuséatzlich die Option as_index=False zu
setzen. Dies flhrt dazu, dass die Gruppierungs-Spalten nicht als Multi-Index im Ergebnis
auftauchen, sondern als normale Spalten.

(

df2
.groupby (['neighbourhood', 'room type'l, as_index=False)
['price']
.min()
)
neighbourhood room type price
0 Harlem Entire home/apt 62.0

10

10/13

1 Harlem Private room 620.0
2 Harlem Shared room 67.0
3 Midtown Entire home/apt 142.0
4 Midtown Private room 578.0
5 Midtown Shared room NaN

1 Hinweis zu Multi-Index

Ein Multi-Index ist ein spezieller Index, bei dem die Index-Spalten mehrere Ebenen
haben. In diesem Fall - also bevor wir as_index=False genutzt haben - hatten wir also
zwei Ebenen, die Nachbarschaft und den Zimmertyp. In folgenden Kapiteln werden
wir noch detailierter auf Multi-Indizes eingehen.

Direkt beim Erzeugen dieser Tabellen mit verschiedenen deskriptiven Statistiken kénnen
wir auch direkt die Spalten benennen anstatt die Standard/Funktionsnamen zu
verwenden:

(

df2

.groupby('neighbourhood', as_index=False)

.agg (
Durchschnittspreis = ('price', 'mean'),
Glunstigster = ('price', 'min'),
Teuerster = ('price', 'max')

neighbourhood Durchschnittspreis Ginstigster Teuerster
0 Harlem 415.5 62.0 913.0
1 Midtown 436.0 142.0 588.0

Es ist auch moglich andere Funktionen als die Standardfunktionen zu verwenden.
Beispielsweise kdnnen wir den Median auch mit der Funktion np.median aus dem
NumPy Modul berechnen.

(
df2

.groupby('neighbourhood")
['price']
.agg(['mean', np.median])

)

11

) BioMath

11/13

< BioMath

mean median

neighbourhood
Harlem 415.5 343.5
Midtown 436.0 578.0
Option 2
(

df2

.groupby('neighbourhood")
.agg({'price':['mean', np.median]})

)

price

mean median
neighbourhood
Harlem 415.5 343.5
Midtown 436.0 578.0

Oft haben die Ergebnisse unnétig viele Nachkommastellen. Dies lasst sich mit
der .round() Methode beheben, welche einfach im Method Chaining nach der
Aggregation aufgerufen wird.

(

df2
.groupby('room_type')
['price']
.agg(['mean', 'var'l)
)
mean var
room_type
Entire home/apt 264.000000 80332.000000
Private room 703.666667 33306.333333
Shared room 67.000000 NaN
(
df2
.groupby('room_type')
['price']
.agg(['mean', 'var'l)
12

12/13

.round(1)
)
mean var
room type
Entire home/apt 264.0 80332.0
Private room 703.7 33306.3
Shared room 67.0 NaN

© Weitere Ressourcen

* Pandas Crashkurs - Daten gruppieren mit GroupBy - Video 6/8 kompletter Kurs
kostenlos deutsch/german
» 7 + 1 Pandas GROUP BY Tips — Great Tips & Tricks (Python Tutorial)

Ubungen

Nutze den vollen Datensatz df um jeweils den Mittelwert, die Varianz und die Anzahl
Beobachungen des Preises pro Zimmertyp zu berechnen (ggf. gerundet auf eine
Nachkommastelle). Erganze dann folgende Ergebnisse:

. $ ist der Durchschnittspreis flr ein Hotelzimmer. (Achtung, schreibe Punkt statt
Komma als Dezimaltrennzeichen!)

* Der Zimmertyp ‘Entire home/apt’ hat mit Beobachtungen die meisten
Datenpunkte aller Zimmertypen im Datensatz.

* Die Preise des Zimmertyps room’ schwanken/variieren am wenigsten.

Basierend auf df2: Berechne pro Kombination aus Nachbarschaft und Zimmertyp (immer
gerundet auf keine Nachkommastelle) den Mittelwert fir den Preis, sowie das Minimum
und Maximum der Servicegebuhr.

* (A) Geschafft

13

) BioMath

13/13

https://youtu.be/OJI-wEW45mg?si=mKPuoROTNjHAIqcs
https://youtu.be/OJI-wEW45mg?si=mKPuoROTNjHAIqcs
https://youtu.be/Y0M4J8MtDaQ?si=Bx0PhHgBw5DXOoex

	Die .groupby() Methode
	Wozu?
	Wie?

	Mehrere Werte-Spalten
	Mehrere Aggregationsfunktionen
	Die .describe() Methode

	Mehrere Grupperierungs-Spalten
	Weitere Details & Tipps
	Übungen

