
1 / 14

Mehr auf die x-Achse
by Woche 11

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns

Nach all der Datenverarbeitung mit Pandas wollen wir uns zur Abwechslung mal wieder
mit der Datenvisualisierung beschäftigen. Schon lange überfällig ist mittlerweile, dass wir
auch mal mehr als eine Variable auf der x-Achse darstellen. Zur Erinnerung, bisher
hatten wir beispielsweise in Kapitel 4.5 die Noten von zwei Personen in zwei separaten
Darstellungen mit seaborn geplottet. Wahrscheinlich ist das den meisten von euch schon
damals eigenartig vorgekommen, da es doch viel sinnvoller wäre, die Noten beider
Personen in einer Darstellung zu vergleichen. Die Idee zu dem Zeitpunkt war, dass wir
uns erstmal auf die Grundlagen konzentrieren und uns dann später um solche
Feinheiten kümmern. Nun ist es soweit.

Noten pro Person
Rückblick Kapitel 4.5
Für den direkten Vergleich, wollen wir auch wirklich genau dieselben Daten verwenden,
die wir schon in Kapitel 4.5 verwendet haben. Also laden wir die Daten nochmal ein und
erzeugen sogar nochmal die separaten Abbildungen:

noten_B = np.array([2, 3, 3, 2, 2, 2, 3, 2])
pseudo_x = np.zeros(len(noten_B))

plt.figure()
plt.title('Person B')
sns.swarmplot(
 x=pseudo_x,
 y=noten_B,
 color='orange',
 size=12
)
sns.boxplot(
 x=pseudo_x,
 y=noten_B,
 color='orange'

1

2 / 14

)
plt.yticks(np.arange(1, 7))
plt.ylim(6.5, 0.5)
plt.ylabel('Note')
plt.xticks([])
plt.show()

noten_E = np.array([2, 3, 4, 2, 1, 2, 3, 6])
pseudo_x = np.zeros(len(noten_E))

plt.figure()
plt.title('Person E')
sns.swarmplot(
 x=pseudo_x,
 y=noten_E,
 color='firebrick',
 size=12
)
sns.boxplot(
 x=pseudo_x,
 y=noten_E,
 color='firebrick'
)
plt.yticks(np.arange(1, 7))
plt.ylim(6.5, 0.5)
plt.ylabel('Note')

2

3 / 14

plt.xticks([])
plt.show()

Beide Personen in einer Darstellung
Wie gesagt sollten wir die Noten beider Personen in einer Darstellung vergleichen. Dafür
müssen wir die Daten erstmal in einen einzigen DataFrame umwandeln. In der Praxis
liegen Daten ja i.d.R. vor und müssen importiert werden. Hier können wir aber mal einen
DataFrame direkt erstellen - entweder komplett manuell oder basierend auf den
vorhandenen Arrays noten_B und noten_E.

Option 1: DataFrame komplett manuell erstellen
df_noten = pd.DataFrame({
 'Person': ['B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'E', 'E', 'E', 'E', 'E',
'E', 'E', 'E'],
 'Note': [2, 3, 3, 2, 2, 2, 3, 2, 2, 3, 4, 2, 1, 2, 3, 6]
})

Option 2: DataFrame mithilfe der vorhandenen Arrays erstellen
df_noten = pd.DataFrame({
 'Person': ['B']*len(noten_B) + ['E']*len(noten_E),
 'Note': np.concatenate([noten_B, noten_E])
})

df_noten

3

4 / 14

 Person Note
0 B 2
1 B 3
2 B 3
3 B 2
4 B 2
5 B 2
6 B 3
7 B 2
8 E 2
9 E 3
10 E 4
11 E 2
12 E 1
13 E 2
14 E 3
15 E 6

Um nun beide Personen in einer Darstellung zu vergleichen, müssen wir gar nicht so viel
ändern. Die wichtigste Änderung ist, dass wir die Daten in sns.swarmplot() und
sns.boxplot() nicht mehr direkt an x= und y= übergeben, sondern stattdessen den
gesamten DataFrame an das bisher nicht genutzte Argument data= übergeben. Wenn
das geschehen ist, können an x= und y= einfach die Spaltennamen als strings
übergeben werden. Die x-Achse bekommt nun auch nicht länger Pseudo-Werte,
sondern die Personenbezeichnungen. Diese lassen wir dementsprechend auch sichtbar
anstatt sie wie vorher mit plt.xticks([]) zu verstecken. Wenn wir für den Moment die
Farben ignorieren, erhalten wir so schon die gewünschte Darstellung:

plt.figure()
plt.title('Notenvergleich: Personen B und E')
sns.swarmplot(
 x='Person',
 y='Note',
 data=df_noten,
 size=12
)
sns.boxplot(
 x='Person',
 y='Note',
 data=df_noten
)
plt.yticks(np.arange(1, 7))
plt.ylim(6.5, 0.5)
plt.ylabel('Note')
plt.show()

4

5 / 14

Es sei kurz angemerkt, dass wir prinzipiell die Farben je Person nicht brauchen, um die
Noten zu vergleichen. Die Information, die die Farben liefern ist redundant, da die
Personen ja bereits anhand der x-Achse unterschieden werden. Trotzdem kann es -
wenn auch nur aus ästhetischen Gründen - sinnvoll sein, in solchen Fällen die Farben
wie in den vorherigen, separaten Abbildungen beizubehalten.

So wollen wir nun auch wieder dafür sorgen, dass sowohl Punkte als auch Boxplots von
Person B orange und die von Person E rot dargestellt werden. Das können wir nicht
einfach wieder über color= tun, da dies ja die Farbe für sämtliche Punkte und Boxplots
festlegt. Stattdessen müssen wir die Farben pro Person festlegen. Das geht z.B. mit
hue=, welches wie auch x= und y= Spaltennamen als strings erwartet.

plt.figure()
plt.title('Notenvergleich: Personen B und E')
sns.swarmplot(
 x='Person',
 y='Note',
 color='orange', # <-------
 data=df_noten,
 size=12
)
sns.boxplot(
 x='Person',
 y='Note',
 color='firebrick', # <-------
 data=df_noten

5

6 / 14

)
plt.yticks(np.arange(1, 7))
plt.ylim(6.5, 0.5)
plt.ylabel('Note')
plt.show()

plt.figure()
plt.title('Notenvergleich: Personen B und E')
sns.swarmplot(
 x='Person',
 y='Note',
 hue='Person', # <-------
 data=df_noten,
 size=12
)
sns.boxplot(
 x='Person',
 y='Note',
 hue='Person', # <-------
 data=df_noten
)
plt.yticks(np.arange(1, 7))
plt.ylim(6.5, 0.5)
plt.ylabel('Note')
plt.show()

6

7 / 14

Wie man sieht, hat hue= also prinzipiell getan was wir wollten, allerdings wurden
automatisch Standardfarben von seaborn/matplotlib verwendet. Wollen wir die Farben
selbst bestimmen, müssen wir sie zusätzlich an das Argument palette= übergeben.
Dieses Argument erwartet ein Dictionary, in dem wir den Personen die gewünschten
Farben zuordnen. Es benötigt also die Farben als Werte und die Stufen als Schlüssel.

Schließlich hier noch ein Tipp: In speziell diesem Code fällt auf, dass wir viele
Argumente doppelt - also an sns.swarmplot() und sns.boxplot() - übergeben. Das ist
nicht nur redundant, sondern auch fehleranfällig. Spätestens wenn wir bestimmte Dinge
sogar dreifach schreiben sollte uns das zu denken geben. Das DRY-Prinzip (Don’t
Repeat Yourself) besagt, dass wir Code möglichst nicht wiederholen sollten. Code ist
leichter zu lesen, leichter zu warten und weniger fehleranfällig, wenn er sich nicht
wiederholt. Hier könnten wir wie folgt die Argumente nur einmalig definieren und dann an
beide Funktionen übergeben:

Mit doppelten Argumenten

farben_je_person = {
 'B': 'orange',
 'E': 'firebrick'
}

plt.figure()
plt.title('Notenvergleich: Personen B und E')
sns.swarmplot(

7

https://www.wikiwand.com/de/Don%E2%80%99t_repeat_yourself

8 / 14

 x='Person',
 y='Note',
 hue='Person',
 palette=farben_je_person,
 data=df_noten,
 size=12
)
sns.boxplot(
 x='Person',
 y='Note',
 hue='Person',
 palette=farben_je_person,
 data=df_noten
)
plt.yticks(np.arange(1, 7))
plt.ylim(6.5, 0.5)
plt.ylabel('Note')
plt.show()

DRY-Prinzip

farben_je_person = {
 'B': 'orange',
 'E': 'firebrick'
}

8

9 / 14

plot_parameter = {
 'x': 'Person',
 'y': 'Note',
 'hue': 'Person',
 'palette': farben_je_person,
 'data': df_noten
}

plt.figure()
plt.title('Notenvergleich: Personen B und E')
sns.swarmplot(
 size=12,
 **plot_parameter
)
sns.boxplot(
 **plot_parameter
)
plt.yticks(np.arange(1, 7))
plt.ylim(6.5, 0.5)
plt.ylabel('Note')
plt.show()

9

10 / 14

AirBnB-Daten
Um noch mehr ausprobieren zu können, wollen wir zu den uns ebenfalls bekannten
AirBnB-Daten zurückkehren. Mit diesen haben wir bereits viel gearbeitet, visualisiert
haben wir sie aber noch fast gar nicht.

pd.set_option('display.max_columns', 4)
pd.set_option('display.max_rows', 6)
pd.set_option('display.max_colwidth', 20)

csv_url = 'https://github.com/SchmidtPaul/ExampleData/raw/main/airbnb_open_
data/Airbnb_Open_Data.csv'
df_airbnb = pd.read_csv(csv_url, dtype={25: str})

Behalte nur bestimmte Nachbarschaften
df_airbnb = df_airbnb[df_airbnb['neighbourhood'].isin(['Harlem', 'East New
York'])]

Behalte nur bestimmte Zimmertypen
df_airbnb = df_airbnb[df_airbnb['room type'].isin(['Entire home/apt', 'Private
room'])]

Formatiere Spalten
df_airbnb = df_airbnb.assign(
 # Konvertiere zu category
 neighbourhood = df_airbnb['neighbourhood'].astype('category'),
 room_type = df_airbnb['room type'].astype('category'),
 # Für price: Erst $ und , entfernen, dann konvertieren
 price = df_airbnb['price'].str.replace('$', '').str.replace(',',
'').astype(float)
)

Behalte nur bestimmte Spalten
df_airbnb = df_airbnb.loc[:, ['neighbourhood', 'room_type', 'price']]

Entferne Zeilen mit fehlenden Werten
df_airbnb.dropna(inplace=True)

Behalte je Kombination aus Nachbarschaft und Zimmertyp nur die
mit den 50 höchsten Preisen
df_airbnb = df_airbnb.sort_values('price', ascending=True)
df_airbnb = df_airbnb.groupby(['neighbourhood', 'room_type']).head(50)

Setze Index zurück
df_airbnb.reset_index(drop=True, inplace=True)

df_airbnb

10

11 / 14

 neighbourhood room_type price
0 Harlem Private room 50.0
1 Harlem Private room 50.0
2 Harlem Entire home/apt 50.0
..
197 East New York Entire home/apt 224.0
198 East New York Entire home/apt 233.0
199 East New York Entire home/apt 233.0

[200 rows x 3 columns]

Unser Teildatensatz enthält also die 50 günstigsten Angebote je Kombination aus
Nachbarschaft und Zimmertyp für die Nachbarschaften Harlem und East New York,
sowie die Zimmertypen Entire home/apt und Private room. Wir wollen primär die Preise
zwischen den Nachbarschaften vergleichen und setzen deshalb die Nachbarschaften
auf die x-Achse. Bis hierhin würde dies also in etwa zur selben Art von Plot führen, wie
wir ihn bereits für die Noten von Personen B und E erstellt haben. Allerdings ändern wir
noch einige Feinheiten beim Swarmplot, um die Daten besser darzustellen: Da es sich
hier um deutlich mehr Datenpunkte handelt, müssen die Punkte kleiner sein - wir
reduzieren also die size=. Zusätzlich setzen wir auch alpha=0.5, was die Punkte 50%
transparent macht. So wird dafür gesorgt, dass die Punkte den dahinterliegenden
Boxplot nicht zu sehr verdecken. Gleichzeitig muss aber sichergestellt werden, dass die
Punkte auf dem gleichfarbigen Hintergrund des Boxplots gut sichtbar sind. Dafür setzen
wir edgecolor='black' und linewidth=0.5, was die Punkte schwarz umrandet und die
Linienstärke auf 0.5 setzt. Schließlich wollen wir noch die y-Achse bei 0 beginnen
lassen, möchten das obere Limit der Achse aber nicht manuell festlegen und setzen
deshalb plt.ylim(0, None). So wird das obere Limit der y-Achse weiterhin automatisch
von seaborn bestimmt.

Zusätzlich können wir in einer weiteren Darstellung noch das hue= Argument nutzen, um
die Zimmertypen zu unterscheiden. Der Unterschied zu oben ist, dass wir diesmal nicht
dieselben, sondern unterschiedliche Informationen an x= und hue= übergeben. Das führt
dazu, dass es nun vier Boxplots und auch verschiedenfarbige Punkte gibt. Außerdem
wird automatisch eine Legende hinzugefügt, die die Farben den Zimmertypen zuordnet.
Interessanterweise ist dies oben nicht geschehen, war ja aber auch nicht nötig, da die
Personen ja bereits anhand der x-Achse unterschieden wurden.

plot_parameter = {
 'y': 'price',
 'x': 'neighbourhood',
 'color': 'orange', # <-----

 'data': df_airbnb

11

12 / 14

}

plt.figure()
sns.swarmplot(
 size=5,
 alpha=0.5,
 edgecolor='black',
 linewidth=0.5,
 **plot_parameter
)
sns.boxplot(
 **plot_parameter
)
plt.ylim(0, None)
plt.show()

plot_parameter = {
 'y': 'price',
 'x': 'neighbourhood',
 'hue': 'room_type', # <-----
 'dodge': True, # <-----
 'data': df_airbnb
}

plt.figure()
sns.swarmplot(

12

13 / 14

 size=5,
 alpha=0.5,
 edgecolor='black',
 linewidth=0.5,
 **plot_parameter
)
sns.boxplot(
 **plot_parameter
)
plt.ylim(0, None)
plt.show()

Übungen
Nimm dir die zuletzt erzeugte Abbildung vor und probiere folgende Dinge aus und
beobachte die Unterschiede:

• Setze dodge auf False

• Erhöhe die Größe der Punkte auf 12.

• Setze alpha auf 1 oder auf 0

• Setze linewidth auf 3

• (A) Geschafft

13

14 / 14

Suche dir eine dritte Nachbarschaft, sowie einen dritten Zimmertypen aus und erstelle
den AirBnB DataFrame erneut aber eben so, dass diese ebenfalls enthalten sind.
Betrachte die Abbildungen erneut.

• (A) Geschafft

14

	Noten pro Person
	Rückblick Kapitel 4.5
	Beide Personen in einer Darstellung

	AirBnB-Daten
	Übungen

