Mehr auf die x-Achse

by Woche 11

import numpy as np

import matplotlib.pyplot as plt
import pandas as pd

import seaborn as sns

Nach all der Datenverarbeitung mit Pandas wollen wir uns zur Abwechslung mal wieder
mit der Datenvisualisierung beschaftigen. Schon lange Uberfallig ist mittlerweile, dass wir
auch mal mehr als eine Variable auf der x-Achse darstellen. Zur Erinnerung, bisher
hatten wir beispielsweise in Kapitel 4.5 die Noten von zwei Personen in zwei separaten
Darstellungen mit seaborn geplottet. Wahrscheinlich ist das den meisten von euch schon
damals eigenartig vorgekommen, da es doch viel sinnvoller ware, die Noten beider
Personen in einer Darstellung zu vergleichen. Die Idee zu dem Zeitpunkt war, dass wir
uns erstmal auf die Grundlagen konzentrieren und uns dann spéater um solche
Feinheiten kimmern. Nun ist es soweit.

Noten pro Person
Ruckblick Kapitel 4.5

Fur den direkten Vergleich, wollen wir auch wirklich genau dieselben Daten verwenden,
die wir schon in Kapitel 4.5 verwendet haben. Also laden wir die Daten nochmal ein und
erzeugen sogar nochmal die separaten Abbildungen:

noten B = np.array([2, 3, 3, 2, 2, 2, 3, 2])
pseudo x = np.zeros(len(noten B))

plt.figure()

plt.title('Person B')

sns.swarmplot (
x=pseudo_Xx,
y=noten_B,
color='orange',
size=12

)

sns.boxplot(
X=pseudo_X,
y=noten_B,
color='orange'

< BioMath

1/14

)

plt.yticks(np.arange(1l, 7))
plt.ylim(6.5, 0.5)
plt.ylabel('Note')
plt.xticks([])

plt.show()

Person B

noten E = np.array([2, 3, 4, 2, 1, 2, 3, 6])

pseudo x = np.zeros(len(noten E))

plt.figure()

plt.title('Person E')

sns.swarmplot (
x=pseudo_Xx,
y=noten_E,
color="'firebrick',
size=12

)

sns.boxplot (
x=pseudo_Xx,
y=noten_E,
color="firebrick!'

)

plt.yticks(np.arange(1l, 7))

plt.ylim(6.5, 0.5)

plt.ylabel('Note")

< BioMath

2/14

plt.xticks([])
plt.show()

Person E

Beide Personen in einer Darstellung

Wie gesagt sollten wir die Noten beider Personen in einer Darstellung vergleichen. Dafur
mussen wir die Daten erstmal in einen einzigen DataFrame umwandeln. In der Praxis
liegen Daten ja i.d.R. vor und mussen importiert werden. Hier kdnnen wir aber mal einen
DataFrame direkt erstellen - entweder komplett manuell oder basierend auf den
vorhandenen Arrays noten B und noten E.

Option 1: DataFrame komplett manuell erstellen
df noten = pd.DataFrame({
'Person': ['B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'E', 'E', 'E', 'E', 'E',
LE -
‘Note': [2, 3, 3, 2, 2, 2, 3, 2, 2, 3, 4, 2, 1, 2, 3, 6]
})

Option 2: DataFrame mithilfe der vorhandenen Arrays erstellen
df noten = pd.DataFrame({

'Person': ['B']*len(noten B) + ['E']*len(noten E),

‘Note': np.concatenate([noten B, noten E])

}

df noten

< BioMath

3/14

Person Note

0 B 2
1 B 3
2 B 3
3 B 2
4 B 2
5 B 2
6 B 3
7 B 2
8 E 2
9 E 3
10 E 4
11 E 2
12 E 1
13 E 2
14 E 3
15 E 6

Um nun beide Personen in einer Darstellung zu vergleichen, miissen wir gar nicht so viel
andern. Die wichtigste Anderung ist, dass wir die Daten in sns.swarmplot () und
sns.boxplot() nicht mehr direkt an x= und y= Ubergeben, sondern stattdessen den
gesamten DataFrame an das bisher nicht genutzte Argument data= Gibergeben. Wenn
das geschehen ist, kdnnen an x= und y= einfach die Spaltennamen als strings
Ubergeben werden. Die x-Achse bekommt nun auch nicht langer Pseudo-Werte,
sondern die Personenbezeichnungen. Diese lassen wir dementsprechend auch sichtbar
anstatt sie wie vorher mit plt.xticks([]) zu verstecken. Wenn wir fir den Moment die
Farben ignorieren, erhalten wir so schon die gewlnschte Darstellung:

plt.figure()
plt.title('Notenvergleich: Personen B und E')
sns.swarmplot (

x="'Person',

y="'Note',

data=df _noten,

size=12
)
sns.boxplot (

x="'Person',

y="'Note',

data=df noten
)
plt.yticks(np.arange(1l, 7))
plt.ylim(6.5, 0.5)
plt.ylabel('Note')
plt.show()

) BioMath

4/14

Notenvergleich: Personen B und E

Person

Es sei kurz angemerkt, dass wir prinzipiell die Farben je Person nicht brauchen, um die
Noten zu vergleichen. Die Information, die die Farben liefern ist redundant, da die
Personen ja bereits anhand der x-Achse unterschieden werden. Trotzdem kann es -
wenn auch nur aus asthetischen Griinden - sinnvoll sein, in solchen Fallen die Farben
wie in den vorherigen, separaten Abbildungen beizubehalten.

So wollen wir nun auch wieder dafiir sorgen, dass sowohl Punkte als auch Boxplots von
Person B orange und die von Person E rot dargestellt werden. Das kénnen wir nicht
einfach wieder Uber color=tun, da dies ja die Farbe fir sdmtliche Punkte und Boxplots
festlegt. Stattdessen muissen wir die Farben pro Person festlegen. Das geht z.B. mit
hue=, welches wie auch x= und y= Spaltennamen als strings erwartet.

plt.figure()
plt.title('Notenvergleich: Personen B und E')
sns.swarmplot (
x="'Person',
y="'Note',
color='orange', # <-------
data=df _noten,
size=12
)
sns.boxplot (
x="'Person',
y="'Note',
color="'firebrick', # <-------
data=df_noten

< BioMath

5/14

< BioMath

)

plt.yticks(np.arange(1l, 7))
plt.ylim(6.5, 0.5)
plt.ylabel('Note')

plt.show()
Notenvergleich: Personen B und E

1 . — e
|
3 -

z

o

=2
4 - —_— —
5 -
6 -

B E
Person

plt.figure()
plt.title('Notenvergleich: Personen B und E')
sns.swarmplot (
x="'Person',
y="'Note"',
hue='Person', # <-------
data=df noten,
size=12
)
sns.boxplot(
x="'Person',
y="'Note"',
hue='Person', # <-------
data=df noten
)
plt.yticks(np.arange(1l, 7))
plt.ylim(6.5, 0.5)
plt.ylabel('Note')
plt.show()

6/14

Notenvergleich: Personen B und E

Person

Wie man sieht, hat hue= also prinzipiell getan was wir wollten, allerdings wurden
automatisch Standardfarben von seaborn/matplotlib verwendet. Wollen wir die Farben
selbst bestimmen, missen wir sie zusatzlich an das Argument palette= Ubergeben.
Dieses Argument erwartet ein Dictionary, in dem wir den Personen die gewlinschten
Farben zuordnen. Es bendtigt also die Farben als Werte und die Stufen als Schlissel.

SchlielYlich hier noch ein Tipp: In speziell diesem Code fallt auf, dass wir viele
Argumente doppelt - also an sns.swarmplot() und sns.boxplot() - Ubergeben. Das ist
nicht nur redundant, sondern auch fehleranfallig. Spatestens wenn wir bestimmte Dinge
sogar dreifach schreiben sollte uns das zu denken geben. Das DRY-Prinzip (Don’t
Repeat Yourself) besagt, dass wir Code moglichst nicht wiederholen sollten. Code ist
leichter zu lesen, leichter zu warten und weniger fehleranfallig, wenn er sich nicht
wiederholt. Hier kdnnten wir wie folgt die Argumente nur einmalig definieren und dann an
beide Funktionen Ubergeben:

Mit doppelten Argumenten

farben je person = {
'B': 'orange',
'E': 'firebrick'

}

plt.figure()
plt.title('Notenvergleich: Personen B und E')
sns.swarmplot (

< BioMath

7/14

https://www.wikiwand.com/de/Don%E2%80%99t_repeat_yourself

< BioMath

x="'Person',
y="'Note"',
hue="'Person',
palette=farben je person,
data=df noten,
size=12
)
sns.boxplot (
x="'Person',
y="'Note"',
hue='Person',
palette=farben je person,
data=df noten
)
plt.yticks(np.arange(1l, 7))
plt.ylim(6.5, 0.5)
plt.ylabel('Note')
plt.show()

Notenvergleich: Personen B und E

Person

DRY-Prinzip

farben je person = {
'B': 'orange',
'E': 'firebrick'

8/14

< BioMath

plot parameter = {

'x': 'Person',
'y': 'Note',
"hue': 'Person',

‘palette': farben je person,
‘data': df noten

}

plt.figure()
plt.title('Notenvergleich: Personen B und E')
sns.swarmplot (

size=12,

**plot parameter
)
sns.boxplot (

**plot parameter
)
plt.yticks(np.arange(1l, 7))
plt.ylim(6.5, 0.5)
plt.ylabel('Note')

plt.show()
Notenvergleich: Personen B und E
1 -
| I
3 -
2
O
=2
4 -
5 -
6 1 ®
B E
Person
9

9/14

< BioMath

AirBnB-Daten

Um noch mehr ausprobieren zu kénnen, wollen wir zu den uns ebenfalls bekannten
AirBnB-Daten zurtickkehren. Mit diesen haben wir bereits viel gearbeitet, visualisiert
haben wir sie aber noch fast gar nicht.

pd.set option('display.max_columns', 4)
pd.set option('display.max _rows', 6)
pd.set option('display.max colwidth', 20)

csv_url = 'https://github.com/SchmidtPaul/ExampleData/raw/main/airbnb open
data/Airbnb Open Data.csv'
df airbnb = pd.read csv(csv_url, dtype={25: str})

Behalte nur bestimmte Nachbarschaften
df airbnb = df airbnb[df airbnb['neighbourhood'].isin(['Harlem', 'East New
York'])1

Behalte nur bestimmte Zimmertypen
df airbnb = df _airbnb[df airbnb['room type'].isin(['Entire home/apt', 'Private
room'])]

Formatiere Spalten
df airbnb = df _airbnb.assign(
Konvertiere zu category
neighbourhood = df airbnb['neighbourhood'].astype('category'),

room_type = df _airbnb['room type'].astype('category'),
Flr price: Erst $ und , entfernen, dann konvertieren
price = df airbnb['price'].str.replace('$', '').str.replace(',"’,

'').astype(float)
)

Behalte nur bestimmte Spalten
df airbnb = df _airbnb.loc[:, ['neighbourhood', 'room type', 'price'l]]

Entferne Zeilen mit fehlenden Werten
df _airbnb.dropna(inplace=True)

Behalte je Kombination aus Nachbarschaft und Zimmertyp nur die

mit den 50 hochsten Preisen

df airbnb = df _airbnb.sort values('price', ascending=True)

df airbnb = df airbnb.groupby(['neighbourhood', 'room type']).head(50)

Setze Index zuriick
df_airbnb.reset index(drop=True, inplace=True)

df _airbnb

10

10/ 14

) BioMath

neighbourhood room_type price
0 Harlem Private room 50.0
1 Harlem Private room 50.0
2 Harlem Entire home/apt 50.0

197 East New York Entire home/apt 224.0
198 East New York Entire home/apt 233.0
199 East New York Entire home/apt 233.0

[200 rows x 3 columns]

Unser Teildatensatz enthalt also die 50 gunstigsten Angebote je Kombination aus
Nachbarschaft und Zimmertyp flr die Nachbarschaften Harlem und East New York,
sowie die Zimmertypen Entire home/apt und Private room. Wir wollen primar die Preise
zwischen den Nachbarschaften vergleichen und setzen deshalb die Nachbarschaften
auf die x-Achse. Bis hierhin wiirde dies also in etwa zur selben Art von Plot filhren, wie
wir ihn bereits fir die Noten von Personen B und E erstellt haben. Allerdings andern wir
noch einige Feinheiten beim Swarmplot, um die Daten besser darzustellen: Da es sich
hier um deutlich mehr Datenpunkte handelt, missen die Punkte kleiner sein - wir
reduzieren also die size=. Zusatzlich setzen wir auch alpha=0.5, was die Punkte 50%
transparent macht. So wird daflir gesorgt, dass die Punkte den dahinterliegenden
Boxplot nicht zu sehr verdecken. Gleichzeitig muss aber sichergestellt werden, dass die
Punkte auf dem gleichfarbigen Hintergrund des Boxplots gut sichtbar sind. Dafir setzen
wir edgecolor="black' und linewidth=0.5, was die Punkte schwarz umrandet und die
Linienstarke auf 0.5 setzt. Schliellich wollen wir noch die y-Achse bei 0 beginnen
lassen, mdchten das obere Limit der Achse aber nicht manuell festlegen und setzen
deshalb plt.ylim(0, None). So wird das obere Limit der y-Achse weiterhin automatisch
von seaborn bestimmt.

Zusatzlich kénnen wir in einer weiteren Darstellung noch das hue= Argument nutzen, um
die Zimmertypen zu unterscheiden. Der Unterschied zu oben ist, dass wir diesmal nicht
dieselben, sondern unterschiedliche Informationen an x= und hue= libergeben. Das fuhrt
dazu, dass es nun vier Boxplots und auch verschiedenfarbige Punkte gibt. AuRerdem
wird automatisch eine Legende hinzugefigt, die die Farben den Zimmertypen zuordnet.
Interessanterweise ist dies oben nicht geschehen, war ja aber auch nicht nétig, da die
Personen ja bereits anhand der x-Achse unterschieden wurden.

plot parameter = {

y': 'price',
'X': 'neighbourhood',
‘color': 'orange',

‘data': df airbnb

11

11/ 14

}

plt.figure()

sns.swarmplot(
size=5,
alpha=0.5,
edgecolor="black"',
linewidth=0.5,
**plot parameter

)

sns.boxplot(
**plot parameter

)

plt.ylim(0, None)

plt.show()

200 A

150 A

price

100 A

50 A

East New York

plot parameter = {

y': 'price',

'x': 'neighbourhood’,
"hue': 'room type', # <---
'dodge': True, # <--

‘data’: df _airbnb
}

plt.figure()
sns.swarmplot (

neiahbourhood

12

T
Harlem

\?) BioMath

12/14

size=5,
alpha=0.5,
edgecolor="black",
linewidth=0.5,
**plot_parameter

)

sns.boxplot (
**plot_parameter

)

plt.ylim(0, None)

plt.show()

room_type
200 - En_tlre home/apt
Private room
Entire home/apt
150 A Private room
()]
D
S
100 A
50 A
0

T T
East New York Harlem
neiahbourhood

Ubungen
Nimm dir die zuletzt erzeugte Abbildung vor und probiere folgende Dinge aus und
beobachte die Unterschiede:

» Setze dodge auf False

Erhohe die GrofRe der Punkte auf 12.

» Setze alpha auf 1 oder auf O
» Setze linewidth auf 3

* (A) Geschafft

13

< BioMath

13/14

) BioMath

Suche dir eine dritte Nachbarschaft, sowie einen dritten Zimmertypen aus und erstelle
den AirBnB DataFrame erneut aber eben so, dass diese ebenfalls enthalten sind.
Betrachte die Abbildungen erneut.

* (A) Geschafft

14

14 /14

	Noten pro Person
	Rückblick Kapitel 4.5
	Beide Personen in einer Darstellung

	AirBnB-Daten
	Übungen

