
1 / 11

Plot exportieren
by Woche 11

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns

Nach all den Visualisierungen, die wir bisher erstellt haben, wird es Zeit, sich mit dem
Exportieren von Plots zu beschäftigen. Oftmals reicht es nicht aus, die Plots nur in
Jupyter Notebooks oder interaktiven Umgebungen zu betrachten. Stattdessen möchte
man sie oft in Präsentationen, Berichten oder wissenschaftlichen Arbeiten verwenden.
Dazu müssen die Plots in verschiedene Dateiformate exportiert werden.

Größe des Plots
Bevor wir uns mit dem Exportieren von Plots beschäftigen, sollten wir uns damit
auseinandersetzen, wie man die Größe der Plots festlegt. Dies kann mit der Funktion
plt.figure(figsize=(width, height)) erreicht werden, wobei width die Breite und
height und Höhe der Abbildung in Inch/Zoll angeben. Bisher haben wir plt.figure()
ohne Argumente verwendet, was die Standardgröße von 6.4x4.8 Zoll ergibt¹. Hier zwei
Beispiele mit unterschiedlichen Größen:

x = np.array(['A', 'A', 'A', 'B', 'B', 'B'])
y = np.array([2, 3, 3, 1, 2, 3])

plt.figure(figsize=(5, 3))
sns.boxplot(x=x, y=y)
plt.show()

¹Eine Übersicht aller Standardwerte gibt es hier oder auch hier.

1

https://matplotlib.org/stable/api/figure_api.html#matplotlib.figure.Figure
https://matplotlib.org/stable/users/explain/customizing.html#matplotlibrc-sample

2 / 11

plt.figure(figsize=(3, 5))
sns.boxplot(x=x, y=y)
plt.show()

2

3 / 11

Exportieren
Um einen Plot als Datei zu exportieren, können wir die Funktion plt.savefig() anstelle
von plt.show() verwenden. Diese Funktion erwartet mindestens den Dateinamen und
das Dateiformat als Argumente. Beides kann einfach als String angegeben wie z.B.
'bild.png' oder 'abbildung.jpeg' angegeben werden. Die Datei wird dann im aktuellen
Arbeitsverzeichnis gespeichert. Das bedeutet standardmäßig, dass die exportierte Datei
im selben Ordner liegt wie das Jupyter Notebook, mit dessen Code sie erstellt wurde.

plt.figure(figsize=(4, 4))
sns.boxplot(x=x, y=y)
plt.savefig('bild1.png')

3

4 / 11

Wird die Datei also so in Jupyter Notebooks/Jupyter Lab exportiert, wird die Abbildung
aber trotzdem auch direkt unter dem Befehl angezeigt. Ist dies nicht gewünscht, so kann
plt.close() nach dem Speichern der Datei aufgerufen werden, sodass die Abbildung
geschlossen wird.

Andersherum ist es in Jupyter Notebooks/Jupyter Lab auch möglich eine bereits
vorhandene bzw. früher exportierte Abbildung anzeigen zu lassen, indem wir die
Funktionen Image() und display() aus dem Modul IPython.display wie folgt verwenden:

Exportiere Bild ohne es anzuzeigen

plt.figure(figsize=(3, 3))
sns.boxplot(x=x, y=y)
plt.savefig('bild2.png')
plt.close()

Zeige bereits vorhandenes Bild an

from IPython.display import Image, display
display(Image(filename='bild2.png'))

4

5 / 11

 Anzeigen via Markdown

Schließlich sei noch ergänzt, dass man eine Abbildung in einem Jupyter Notebook
(.ipynb) auch direkt in Markdown-Zellen, also ohne Python-Code, anzeigen lassen
kann. Dazu würde man lediglich in einer Markdown-Zelle schreiben
und auch so wird dann das bereits vorhandene Bild angezeigt.

Dateiformate und DPI
Nun haben wir bereits zwei Abbildungen als PNG-Datei exportiert. Wir haben aber auch
die Möglichkeit, die Abbildungen in anderen Formaten zu exportieren. Die gängigsten
Formate sind PNG, JPEG, PDF und SVG. Jedes Format hat seine eigenen Vor- und
Nachteile. PNG ist beispielsweise verlustfrei² und eignet sich gut für Plots, die in
Präsentationen oder Berichten verwendet werden. PDF und SVG sind vektorbasierte³
Formate, die sich gut für Drucke eignen, da sie skalierbar sind. Um alle verfügbaren
Formate zu sehen, kann folgender Befehl verwendet werden:

formate = plt.gcf().canvas.get_supported_filetypes()
pd.DataFrame(formate.items())

²Verlustfrei bedeutet, dass die Qualität des Bildes nicht beeinträchtigt wird, wenn es mehrmals
gespeichert wird, weil jedes Mal gilt, dass die komprimierte Datei wieder in die Originaldatei
rücktransformiert werden kann.

³Vektorbasierte Formate speichern sozusagen nicht als eine Menge Pixel, sondern als durch Formeln
definierte Linien und Flächen. Das hat den Vorteil, dass man die Abbildung beliebig vergrößern kann,
also unendlich hineinzoomen kann, ohne dass sie an Qualität verliert bzw. “pixelig” wird.

5

6 / 11

 0 1
0 eps Encapsulated Postscript
1 jpg Joint Photographic Experts Group
2 jpeg Joint Photographic Experts Group
3 pdf Portable Document Format
4 pgf PGF code for LaTeX
5 png Portable Network Graphics
6 ps Postscript
7 raw Raw RGBA bitmap
8 rgba Raw RGBA bitmap
9 svg Scalable Vector Graphics
10 svgz Scalable Vector Graphics
11 tif Tagged Image File Format
12 tiff Tagged Image File Format
13 webp WebP Image Format

Um einen anderen Dateitypen zu erhalten, können wir also einfach den Dateinamen
entsprechend ändern. Bei nicht-vektorbasierten Formaten (= PNG und JPEG) können
wir auch die Auflösung des Bildes festlegen. Die Auflösung wird in DPI (Dots per Inch)
gemessen und gibt an, wie viele Pixel pro Zoll in einem Bild vorhanden sind. Eine
höhere Auflösung bedeutet, dass das Bild schärfer ist, aber auch mehr Speicherplatz
benötigt. Die Standardauflösung beträgt 100 DPI. Die Auflösung kann mit dem Argument
dpi in der Funktion plt.savefig() festgelegt werden. Dabei muss klar sein, dass selbst
identische figsize bei unterschiedlichen dpi-Werten unterschiedlich große Dateien
ergeben. Normalerweise wird dann ein weniger gut aufgelöstes Bild auch kleiner

6

7 / 11

dargestellt - auch in Jupyter Notebooks/Jupyer Labs. Hier werden beide Bilder aber trotz
unterschiedlicher DPI ausnahmesweise mal auf dieselbe Höhe und Breite forciert um
den Unterschied deutlich zu machen:

plt.figure(figsize=(4, 4))
sns.boxplot(x=x, y=y)
plt.savefig('bild1.png', dpi=100)

plt.figure(figsize=(4, 4))
sns.boxplot(x=x, y=y)
plt.savefig('out/bild3.png', dpi=30)

7

8 / 11

 DPI bereits in plt.figure() angeben

Übrigens kann der DPI-Wert auch bereits in der plt.figure()-Funktion - ebenfalls
via dpi= - angegeben werden. Tatsächlich ist auch dort der besagte Standard
dpi=100 während der Standard in plt.savefig() gleich dpi='figure' ist. Letzteres
bedeutet, dass der DPI-Wert standardmäßig dem Wert entspricht, der in der
plt.figure()-Funktion angegeben wurde.

weitere Optionen
Neben dem Dateiformat und der Auflösung gibt es noch weitere Optionen, die in der
Funktion plt.savefig() festgelegt werden können. Beispielsweise ist der Hintergrund
des Plots standardmäßig weiß, erkann jedoch mittels transparent=True auch transparent
gemacht werden.

Außerdem können die Funktionen bbox_inches='tight' und pad_inches=0.1 verwendet
werden, um den Plot so zu beschneiden, dass er genau in die Abbildung passt.
bbox_inches='tight' sorgt dafür, dass der Plot so zugeschnitten wird, dass alle
Elemente im Plot sichtbar sind. pad_inches legt fest, wie viel Platz zwischen den
Elementen und dem Rand des Plots bleiben soll. Genau dieser Befehl bietet eine

8

9 / 11

schnelle Lösung, falls mal Text am Rand einer Abbildung abgeschnitten erscheint. Hier
ein Beispiel, wobei ein Hintergrundbild (Quelle: unsplash.com) verwendet wird um die
Transparenz kenntlich zu machen:

plt.figure(figsize=(4, 4))
sns.boxplot(x=x, y=y)
plt.savefig(
 'out/bild4.png',
 bbox_inches='tight',
 pad_inches=0,
 transparent=True
)
plt.close()

plt.figure(figsize=(4, 4))
sns.boxplot(x=x, y=y)
plt.savefig(
 'out/bild5.png',
 bbox_inches='tight',
 pad_inches=2,
 transparent=False
)
plt.close()

9

https://unsplash.com/de/fotos/graue-betonoberflache--odUkx8C2gg

10 / 11

Datei direkt öffnen
Hier sei noch ein Tipp erwähnt, mit dem man die Exportierten Dateien auch direkt mit
seinem Betriebssystem, also quasi außerhalb von Python/Jupyter Notebooks/Jupyter
Labs, öffnen kann. Dazu je nach Betriebssystem folgender Befehl verwendet werden:

Windows

import os

os.startfile('bild5.png')

macOS

10

11 / 11

import os
import subprocess as sp
sp.run(['open', 'bild5.png'])

Linux

import os
import subprocess as sp
sp.run(['xdg-open', 'bild5.png'])

Es sei angemerkt, dass die Datei dann also im Prinzip so geöffnet wird, wie als wenn
man auf sie doppelklicken würde. Das bedeutet, dass sie in dem Standardprogramm
geöffnet wird, das auf eurem Betriebssystem für das jeweilige Dateiformat zuständig ist.
Es ist gut möglich, dass einige von euch für bestimmte Dateiformate noch gar kein
Standardprogramm festgelegt haben. Beispielsweise würde dann in Windows beim
Doppelklick auf eine solche Datei ein Dialog erscheinen, der fragt, mit welchem
Programm die Datei geöffnet werden soll. Falls das der Fall ist, dann wird auch der oben
genannte Befehl nicht funktionieren. Man muss also erst dafür sorgen, dass ein
Standardprogramm festgelegt ist.

Wenn es aber erstmal funktioniert, dann ist dies eine sehr schnelle Möglichkeit, um die
exportierten Dateien zu überprüfen, ohne sie erst in einem Dateiexplorer suchen und
anklicken zu müssen. Ich selbst arbeite oft mit dieser Methode, wenn es eine relevante
Abbildung ist, die bereits größtenteils fertig ist und ich nur noch die Feinheiten
überprüfen möchte. Ich betrachte dann die Änderungen, die ich an der Abbildung
vornehme, also gar nicht mehr in Python/Jupyter Notebooks/Jupyter Labs, sondern
exportiere jedes Mal direkt die Abbildung und öffne sie auotmatisch mit einem
entsprechenden Programm (auf meinem zweiten Bildschirm).

 Weitere Ressourcen

• Beheben von Matplotlib savefig, das Labels abschneidet: Eine umfassende
Anleitung [bis zur Überschrift Alternative zu Matplotlib: Daten mit PyGWalker
visualisieren]

Übungen
Exportiere eine Abbildung deiner Wahl einmal in jedes der vier Dateiformate PNG,
JPEG, PDF und SVG. Verwende dabei die Auflösung von 300 DPI für die Dateiformate,
bei denen dies sinnvoll ist.

• (A) Geschafft

11

https://docs.kanaries.net/de/topics/Matplotlib/matplotlib-savefig-cuts-off-labels
https://docs.kanaries.net/de/topics/Matplotlib/matplotlib-savefig-cuts-off-labels

	Größe des Plots
	Exportieren
	Dateiformate und DPI
	weitere Optionen

	Datei direkt öffnen
	Übungen

