Formen, Legenden usw.
by Woche 12

import numpy as np

import matplotlib.pyplot as plt
import pandas as pd

import seaborn as sns

pd.set option('display.max columns', 4)
pd.set option('display.max rows', 10)
pd.set option('display.max_colwidth', 20)

Wir haben bereits in Kapitel 6.1 gelernt wie man mit hue= und palette= die Farben der
Datenpunkte in einem Scatterplot verandern kann. In diesem Kapitel werden wir uns mit
weiteren Moglichkeiten beschaftigen, aber auch Uber die fortgeschrittene Anwendung
von Farben in Data Analysis sprechen. Gleichzeitig erzeugen wir erstmals Scatter-Plots
bei denen sowohl auf der x- als auch auf der y-Achse numerische Variablen dargestellt
werden.

Pinguin Daten

In diesem Kapitel werden wir einen neuen Datensatz (Urspriingliche Quelle; Kopie auf
GitHub) verwenden. Dieser Datensatz enthalt Grolenmessungen von drei Pinguinarten,
die auf drei Inseln im Palmer-Archipel in der Antarktis beobachtet wurden. Die Daten
wurden von 2007 bis 2009 von Dr. Kristen Gorman im Rahmen des Palmer Station Long
Term Ecological Research Program, Teil des US Long Term Ecological Research
Network, gesammelt.

csv_url="'https://raw.githubusercontent.com/SchmidtPaul/ExampleData/main/
palmer penguins/palmer penguins.csv'
df=pd.read csv(csv url)

Konvertiere alle 'object'-Spalten in 'category'
for col in df.select dtypes(include='object').columns:
df[col] = df[col].astype('category")

Zeige Infos
df.info()

< BioMath

1/18

https://allisonhorst.github.io/palmerpenguins/articles/intro.html
https://github.com/SchmidtPaul/ExampleData/blob/main/palmer_penguins/palmer_penguins.csv
https://github.com/SchmidtPaul/ExampleData/blob/main/palmer_penguins/palmer_penguins.csv

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 344 entries, 0 to 343
Data columns (total 9 columns):

#

No b WNRE O

8

Column
rowid
species
island

bill length mm

bill dept

h_mm

flipper_length mm
body mass g

sex
year

Non-Null Count

344

non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null

int64
category
category
float64
float64
float64
float64
category
int64

dtypes: category(3), float64(4), int64(2)
memory usage:

Wie so oft erzeugen wir uns einen Teildatensatz fiir bessere Ubersichtlichkeit. Diesmal
behalten wir die Spalten species (Pinguinart), sex (Geschlecht), body mass g
(Korpergewicht in g) und flipper_length_mm (LAnge der Flossen in Millimetern).

df2=df[['species', 'sex

df2

A W NP O

339
340
341
342
343

[344

species
Adelie
Adelie
Adelie
Adelie
Adelie

Chinstrap
Chinstrap
Chinstrap
Chinstrap
Chinstrap

rows x 4

17.6 KB

sex
male
female
female
NaN
female
male
female
male
male
female

columns]

, 'body mass g',

"flipper length mm']]

body mass g flipper length mm

3750.0
3800.0
3250.0

NaN
3450.0

4000.
3400.
3775.
4100.
3775.

© © 0 o o -

181.0
186.0
195.0

NaN
193.0

207.
202.
193.
210.
198.

(ol ol oMo R o R

) BioMath

2/18

Scatterplot
Basisversion

So erzeugen wir also zunachst einen einfachen Scatterplot mit den Kérpergewichten auf
der x-Achse und den Flossenlangen auf der y-Achse. Wie zu erwarten haben schwerere

Pinguine langere Flossen.

plt.figure(figsize=(5, 4))
sns.scatterplot(
data=df2,
x="'body mass g',
y='flipper_length mm'
)
plt.xlabel('Kérpergewicht (g)
plt.ylabel('Flossenlange (mm)'

)
)

plt.show()
230 % 0
. °°°
o %o
220 e 2e0es * o
oL 07%3%
- ° ': ,Sségﬁb;upod'o °
o oS, See® % ° °
€ 210+ oo e®
- o 00O " o®
S .» ® %%
c oo o9
LD 200 N (,’..'39 oo
c 2 o0% < o
9 © 6@ % 0% % &
i o %, O STO® 4 to
£ 190 SN0 ‘e ©
T a o %W @9 Vv Y
0 gleotge 09 °
° ‘.:‘c:ré“' o’ °
1801 %4 °° @ e
® o °
°
°
170 -

3000 3500 4000 4500 5000 5500 6000

Koérpergewicht (g)

Mit Farbe

Um mehr Informationen in die Abbildung zu bringen kénnen wir die Farben der
Datenpunkte nach der Pinguinart oder aber nach dem Geschlecht variieren. In diesem
Zuge wird hier auch direkt gezeigt wie man die Legende anpassen kann. Via

< BioMath

3/18

plt.legend() kdnnen Titel und/oder auch Label fir die Kategorien angepasst werden.

Aulerdem kann die Position der Legende festgelegt werden®.

plt.figure(figsize=(5, 4))
sns.scatterplot(

data=df2,

x="'body mass g',

y="'flipper_ length mm',

hue="'species'
)
plt.xlabel('Korpergewicht (g)')
plt.ylabel('Flossenlange (mm)')
plt.legend(

title="Art"',

loc="'lower right'

)

plt.show()
230 A .z):o‘(_o.o
o'. .:gr 362' o
220 Sodfsde, o °
—~ * ': ,Sgégﬁb;upod'o
€ o¥ s Se.0% % ¢
£ 210 - o eooeiae ® °
- o, 00)0 ¢ o ©
g ¢ e w®
S o0 0,0 o4 °°
E 2007 > & Q)'?.’.:" 0% Lo
o, SIS
S1001 ° ¥ LEatEE e ¢
. ¢ Suebuare ®e Art
o 0 S5 g ° .
180 A [] e ® <% o ® Adelie
* ® ® Chinstrap
o * e Gentoo
170 A

3000 3500 4000 4500 5000 5500 6000

Korpergewicht (g)

plt.figure(figsize=(5, 4))
sns.scatterplot(

'"Um zu sehen was aufler 'lower right' noch moglich ist, siehe z.B. in der Dokumentation von

plt.legend() hier speziell beim Argument loc.

< BioMath

4/18

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.legend.html

< BioMath

data=df2,
x="'body mass g',
y="'flipper length mm',
hue="'sex'
)
plt.xlabel('Korpergewicht (g)')
plt.ylabel('Flossenlange (mm)')
plt.legend(
title='Geschlecht',
labels={'Mannlich': 'male', 'Weiblich': 'female'}
)
plt.show()

2301 Geschlecht
Mannlich
i °
2204 © Weiblich e o 2%
o %S o
€ S .i:%ﬁr'.
€ 210 A 100 02 e
- o o®OO" o
o
5 2 :°)
= 00 ® - g%
9 @ 2@ 0% 0%
v o % & oS
2190 A O
. ¢ S ore
o o o5 e
180 - o %0° oo
e o
°
°
°
170 -

3000 3500 4000 4500 5000 5500 6000
Kérpergewicht (g)

Mit Farbe und Form

Beim genaueren Betrachten fallt auf, dass speziell bei der Unterscheidung nach
Geschlecht das resultierende Bild nicht ganz klar ist, da es scheinbar je zwei Gruppen/
Cluster mannlicher und weiblicher Pinguine zu geben scheint. Es ist offensichtlich, dass
ein erklarender Faktor fehlt. Ziehen wir aber die Information aus dem anderen Plot hinzu
wird klar, dass dieser fehlende Faktor die Pinguinart ist. Der Grund warum es scheinbar
je zwei Gruppen/Cluster gibt ist, dass Art Gentoo deutlich héhere Werte fir beide
Variablen aufweist. Pro Art betrachtet ist es aber schlichtweg so, dass mannliche
Pinguine tendenziell schwerer und langere Flossen haben als weibliche Pinguine. Das

5/18

bedeutet im Endeffekt auch, dass es eigentlich drei Gruppen/Cluster mannlicher und
weiblicher Pinguine gibt, allerdings liegen die beiden Arten Adelie und Chinstrap so nah
beieinander, dass sie sich Uberlagern.

Wir haben also fiir diesen Fall die Losung des Problems gefunden. Es soll sich aber an
dieser Stelle klargemacht werden, dass man manchmal die erklarende Variable (wie hier
die Pinguinart) nicht kennt und deshalb auch nicht in der Lage ist die Daten vollkommen
richtig zu interpretieren. Der Fakt, dass es drei und nicht zwei Cluster sind, ware aus der
zweiten Abbildung je Geschlecht schlichtweg nicht ersichtlich gewesen.

Wie dem auch sei, der logische nachste Schritt ist es sowohl die Art als auch das
Geschlecht in derselben Abbildung zu berlcksichtigen. Dafir kénnen wir zusatzlich die
Form der Datenpunkte variieren. Prinzipiell reicht es dafir zusatzlich style='sex" in die
Funktion sns.scatterplot() einzufigen. Neben Kreisen (female) gibt es dann auch
Kreuze (male) und sowohl die Farben als auch die Symbole sind in der Legende zu
finden.

Wir wissen bereits, dass wir dann mittels palette= und einem entsprechenden Dictionary
die Farben selbst anpassen konnen. Eine Liste aller verfiigbaren Farbnamen sind in der
Dokumentation von Matplotlib zu finden. Das entsprechende Argument fiir die Symbole
ist markers=. Die moglichen Symbole sind ebenfalls in der Dokumentation von Matplotlib
zu finden.

plt.figure(figsize=(5, 4))
sns.scatterplot(
data=df2,
x="'body mass g',
y="'flipper_ length mm',
hue="'species',
style="sex'

)
plt.xlabel('Korpergewicht (g)')

) BioMath

6/18

https://matplotlib.org/stable/gallery/color/named_colors.html
https://matplotlib.org/stable/api/markers_api.html

plt.ylabel('Flossenlange (mm)')

plt.show()
b 4
- x¢ Y 9%, %
230 e xR x
x X X
O MXx X x %
220 A Q ¢ AV AN X x
° @ % %
® b0 9% . . x, ¥
— @ AOKIHNC XXX X
S x¥ Qe,0° ®e * *
L)} »
€ 210 4 %¢ %10 @ 02 @ X %
— e 00Ve o o X
w ®ox oxe
o
c oo xx X . . O%
© 200 1 o o o%S x species
c x oZ I x w2 x P
] 3 w %2 Xwe X % .
Q @O0 R PN % X ® Adelie
v o %, O OEOLY xoxTX .
£ 190 S %R x X ® Chinstrap
L a o O 409 X *®
.’ .o):"“:.".&i,gsx, “ e Gentoo
() A
o Qeo* oo sex
180 - O X X
° ° . x e female
°
° % male
170_ T T T T T T T
3000 3500 4000 4500 5000 5500 6000
Kérpergewicht (g)
palette = {
'Adelie': 'darkseagreen',
'Chinstrap': 'cornflowerblue',
'Gentoo': 'goldenrod'
}
markers = {
'male': 'D',
'female': 'P'

}

plt.figure(figsize=(5, 4))
sns.scatterplot(
data=df2,
x="'body mass g',
y='flipper length mm',
hue="'species',
style='sex"',
palette=palette,
markers=markers

< BioMath

7/18

) BioMath

)
plt.xlabel('Kérpergewicht (g)')
plt.ylabel('Flossenlange (mm)')

plt.show()
230 A
220 A
€
§ 210 A
(O]
[@))]
_C
1© 200 1 species
§ Adelie
u_? 190 - Chinstrap
Gentoo
180 - sex
+ female
¢ male
170 A

3000 3500 4000 4500 5000 5500 6000
Kérpergewicht (g)

Feinheiten anpassen

An diesem Punkt bietet sich eine gute Gelegenheit um lber das Anpassen von
Feinheiten in seaborn/matplotlib Plots zu sprechen. Unabhangig davon ob wir die
Farben und Symbole selber auswahlen, sollte die Legende angepasst werden. In den
vorangegangenen Plots ging dies noch recht einfach, da wir nur mit plt.legend() Titel,
Stufen-Label (und Position) anpassen konnten. Nun ist unsere Legende allerdings etwas
komplexer, da wir sowohl die Art als auch das Geschlecht in der Legende haben. Die
Konsequenz ist, dass plt.legend(title=) der Legende einen Ubergreifenden Titel gibt,
nicht aber die Titel fir die einzelnen Variablen (also species und sex) anpasst:

plt.figure(figsize=(5, 4))
sns.scatterplot(

data=df2,

x="'body mass g',

8/18

< BioMath

y="'flipper_length mm',
hue="'species',
style="sex'
)
plt.xlabel('Kérpergewicht (g)')
plt.ylabel('Flossenlange (mm)')
plt.legend(title="'Art und Geschlecht')

plt.show()
230 A %¢ %, %
, XXX R
x "X §x“ Y
® p MXA X X
220 8 ¢ AV AN X x
° o g% x
® o %e X
—_ o A0 xxxX*x
g 210 < (oo:)’c:.s.‘:‘ Oe
= e oMo ® x*
<) x
=4 o ux ex Art und Geschlecht
% 200 A v e D% g species
o 3 XA Swe® % .
Q @) 070, 08 X" 9% < ® Adelie
a g O O50LI% . 003X)
9 190 - 3 THCOTE Y % Chinstrap
T PP @R ¢ x
o0t 0> g x ® Gentoo
e o wo¥ x
o %> o%x x x
1804 © @eX ey >ex
° o x ® female
o) x male
170 H

3000 3500 4000 4500 5000 5500 6000
Koérpergewicht (g)

Solch einen Ubergreifenden Legendentitel brauchen wir aber gar nicht zwingend,
sondern wollen wie gesagt die Titel fur die einzelnen Variablen anpassen. Naturlich ist
dies auch mdglich, allerdings nicht in einem einzigen Schritt/Befehl. Stattdessen lernen
wir nun eine sehr typische Vorgehensweise fur das fortgeschrittene Bearbeiten von
seaborn/matplotlib Plots kennen. Im Prinzip kann man es sich so vorstellen, dass man
einen Plot nicht einfach nur erstellt, sondern ihn in ein Objekt speichert. Dieses Objekt
kann dann weiter bearbeitet werden. Wir lesen dann bestimmte Teile des bereits
existierenden Plot-Objekts aus und bearbeiten diese.

In diesem Fall wollen wir die Legende bearbeiten. Daflir speichern wir zunachst den
Scatter-Plot, welcher mit sns.scatterplot() erzeugt wird z.B. in einem Objekt scatter.
Fir dieses Objekt gibt es dann verschiedene Methoden und wir nutzen hier

get _legend handles labels(). Diese Methode gibt uns zwei Listen zurlick: handles und

9/18

) BioMath

labels. Die handles sind die Symbole und Farben, die in der Legende dargestellt
werden. Die labels sind die Labels/Namen der Kategorien. Wir speichern direkt beide
Listen in zwei separate Variablen, indem wir sie getrennt durch ein Komma vor das =
schreiben. Wir kbnnen uns den Inhalt dieser Listen ausgeben lassen:

plt.figure(figsize=(5, 4))
scatter = sns.scatterplot(
data=df2,
x="'body mass g',
y="'flipper length mm',
hue="'species',
style="'sex'
)
plt.xlabel('Korpergewicht (g)')
plt.ylabel('Flossenlange (mm)')

handles, labels = scatter.get legend handles labels()

print(handles)

[<matplotlib.lines.Line2D object at 0x00000233833F3510>,
<matplotlib.lines.Line2D object at 0x0000023383406310>,
<matplotlib.lines.Line2D object at 0x0000023383406C50>,
<matplotlib.lines.Line2D object at 0x0000023383407550>,
<matplotlib.lines.Line2D object at 0x0000023383407F10>,
<matplotlib.lines.Line2D object at 0x0000023383410810>,
<matplotlib.lines.Line2D object at 0x0000023383411150>]

print(labels)

['species', 'Adelie', 'Chinstrap', 'Gentoo',6 'sex',6 'female', 'male']

Wie man sieht, ist der Inhalt von handles zumindest nicht ohne Weiteres verstandlich, da
dort etwas von <matplotlib.lines.Line2D object... steht. Die labels sind aber genau
die Strings, die wir in der Legende sehen - und zwar sowohl die der Variable selbst, als
auch die der Variablenstufen. Wir brauchen hier also lediglich eine aktualisierte Version
der Labels (z.B. neue_labels) erzeugen und diese dann in die Legende einfligen. Das
ginge naturlich ganz simpel, indem wir manuell definieren neue labels = ['Art’,
'Adelie', 'Chinstrap', 'Gentoo', 'Geschlecht', 'Weiblich', 'Mannlich']. Allerdings
wollen wir direkt zu einer eleganteren Lésung kommen. Diese bendtigt zwar ggf. mehr
Code, ist aber weniger fehleranfallig und flexibler.

10

10/18

< BioMath

Dazu definieren wir ein Dictionary (z.B. label mapping), welches die alten Labels als
Keys und die neuen Labels als Values enthalt. Dann kénnen wir mit einer List
Comprehension die Labels in labels durch die neuen Labels ersetzen. Das Ergebnis
speichern wir in neue_labels. Der Vorteil ist zum Einen, dass wir nur die Labels im
Dictionary angeben mussen, die wir andern wollen und zum Anderen, dass wir die
Labels nicht in der Reihenfolge angeben missen, in der sie in labels vorkommen.
Letzteres verhindert auch versehentliche Fehler beim Ersetzen. Ggf. ware uns nicht
(oder zu spat) aufgefallen, dass wir 'Weiblich' und 'Mannlich' in der neuen Liste
vertauscht haben und somit aufgrund einer falsch gelabelten Legende die Ergebnisse
falsch interpretiert werden.

Dictionary zur Umbenennung der Labels
label mapping = {

'species': 'Art',

'sex': 'Geschlecht',

'female': 'Weiblich',

'male': 'Mannlich’

}

plt.figure(figsize=(5, 4))
scatter = sns.scatterplot(
data=df2,
x="'body mass g',
y='flipper length mm',
hue="'species',
style="'sex'
)
plt.xlabel('Kdorpergewicht (g)')
plt.ylabel('Flossenlange (mm)')

Extrahiere aus Legende
handles, labels = scatter.get legend handles labels()

Labels mit Hilfe des Dictionaries anpassen
neue labels = [label mapping.get(label, label) for label in labels]

Uberschreibe Legende mit neuen Labels
legend = plt.legend(handles, neue labels)

plt.show()

11

11/18

< BioMath

230 A x¢ Y 9%, %
30 xxx X
x Mex
® e MX X T X%
220 A 8 ¢ AP AN X x
o¥ O¢ ¥y x
®* "l 0 . x, X
—_ o ~O80x¢ xxxx
e u’e(.‘.o 0g X x
€ 210 < 30 © OVUA @ X9
- e oooO~T . x*
o
@ X X ex
-C . x)
200 A P Art
o Pt x% Xyg R % |
(O X A< 13 el 53 X) i
% 0, & %% 3«,,&»:' Ad? 'e
£ 190 - SV ek R X Chinstrap
b 8 Qe ae X X
0% oue® « x ® Gentoo
o *Ve* per . * Geschlecht
eschlec
180 o oo .»s’ ’x x T
* x ® \Weiblich
o ° x Mannlich
170 -

3000 3500 4000 4500 5000 5500 6000
Kérpergewicht (g)

Das hat geklappt. Um diese Vorgehensweise beim Anpassen von Feinheiten noch mehr
zu festigen, wollen wir nun aber noch lernen wie man z.B. die Variablenlabel in der
Legend fett druckt. Auch hierflr extrahieren bzw. Uberschreiben wir wieder bestimmte
Teile des bereits existierenden Plot-Objekts. Das Legendenobjekt 1egend wurde zwar
nicht direkt im Code benannt, aber durch den Aufruf von plt.legend() wird im
Hintergrund automatisch eine Legende erstellt, auf die wir dann zugreifen konnen. Es
muss klar sein, dass all dies und was folgt neu und nicht unbedingt intuitiv ist, sodass
man sich fragt “Woher hétte ich das wissen sollen?”. Die Antwort ist, dass man es nicht
wissen/herleiten kann, sondern es lernen muss. Man muss es aber auch nicht
auswendig lernen, sondern eher das Konzept verstehen und dann bei Bedarf
nachschlagen.

Jedenfalls ist hier erstmal exemplarisch gezeigt wie man auf dieses Legendenobjekt
zugreifen kann. Mit legend.get_texts() erhalten wir eine Liste von Textobjekten, die in
der Legende dargestellt werden. Mit legend.get texts()[0] erhalten wir das erste
Textobjekt. Mit legend.get texts()[0].get text() erhalten wir den Text des ersten
Textobjekts. Mit legend.get texts()[0].get fontproperties() erhalten wir die Schriftart
des ersten Textobjekts. Fur letzteren Befehl missen wir allerdings noch from
matplotlib.font manager import FontProperties importieren. Das mussen wir aber
sowieso um im darauffolgenden Schritt die Schriftart nicht zu extrahieren, sondern zu
Uberschreiben.

12

12/18

print(legend.get texts())

<a list of 7 Text objects>

print(legend.get texts()[0])

Text (0, 0, 'Art')

legend.get texts()[0].get text()

‘Art’

from matplotlib.font manager import FontProperties
legend.get texts()[0].get fontproperties()

<matplotlib.font manager.FontProperties object at 0x00000233834C6710>

Schlielich kénnen wir die Schriftart des Textobjekts Giberschreiben. Das
FontProperties-Objekt wird mit dem Argument weight="'bold"' erstellt, um den Text fett zu
drucken. Das FontProperties-Objekt wird dann mittels set fontproperties() auf das
Textobjekt angewendet. Das Ganze wird in einer Schleife fir alle Textobjekte in der
Legende durchgefluhrt, jedoch nur fur die Textobjekte, die die Labels 'Art' und
'‘Geschlecht' enthalten. Das ist Ubrigens ein gutes Beispiel dafiir, dass man die for-
Schleifen und if-Statements aus den ersten Kapiteln dieses Kurses auch hier und spater
in der Praxis auch tatsachlich anwendet.

Dictionary zur Umbenennung der Labels
label mapping = {

'species': 'Art',

'sex': 'Geschlecht',

'female': 'Weiblich',

‘male': 'Mannlich'’

}

plt.figure(figsize=(5, 4))
scatter = sns.scatterplot(
data=df2,
x="'body mass g',
y="'flipper length mm',
hue="'species',

13

< BioMath

13/18

style="'sex'
)
plt.xlabel('Korpergewicht (g)')
plt.ylabel('Flossenlange (mm)')

Extrahiere aus Legende
handles, labels = scatter.get legend handles labels(

Labels mit Hilfe des Dictionaries anpassen

neue_ labels = [label mapping.get(label, label) for label in labels]

Uberschreibe Legende mit neuen Labels
legend = plt.legend(handles, neue labels)

Titel in der Legende fett drucken
from matplotlib.font manager import FontProperties

for text in legend.get texts():
if text.get text() in ['Art', 'Geschlecht']:

text.set fontproperties(FontProperties(weight="'bold"))

)

plt.show()
230 ¢ Mo %
xxx ~ %
x Mx X
® e MX X T X
220 A 8 ¢ Ao AN X x
° X x
® "0 0 . x,. %
—_ o ~OeiOx¢ xxx¢x
= x¥ o Q0,0 0 *
€ 210 4 %< 310 @ OQ § X3 %
- . 0000 @ o X
g *ox oxe
c oo xx % . . O%
:© 200 - X XA
= o o 9% x Art
c x oaH% Pes
o X KT A e xS Ry &K X ,
g @ 650 O x*e X% T X e Adelie
a o %, O ogeiin 5% _
£ 190 - SO e %X Ax X e Chinstrap
[T a0 @ 0.0 (24 x %
AT T e Gentoo
0 %0 %y x
180 A () '.‘. .g\.)x " Geschlecht
* ° * e Weiblich
o ° x Ménnlich
170 -

3000 3500 4000 4500 5000 5500 6000
Kérpergewicht (g)

14

< BioMath

14 /18

GroRe & Transparenz

Zum Abschluss soll nochmal klar gemacht werden, dass ja auch die Gréfke und
Transparenz der Datenpunkte angepasst werden kann. Die Grofe wird mit dem
Argument s= angepasst und die Transparenz mit dem Argument alpha=. Dies geht zum
Einen statisch, also mit einem Ubergreifenden Wert fir alle Datenpunkte.

Fir die PunktgréRe geht es aber auch dynamisch, also wie auch die Farbe und Form
der Datenpunkte, abhangig von einer weiteren Variable. Allerdings eignet es sich besser
in Abhangigkeit von numerischen Variablen, da es sonst schnell unibersichtlich wird. In
speziell dieser Abbildung das nicht unbedingt sinnvoll, soll aber trotzdem mal
demonstriert werden. Wir setzen also size='body mass g', sodass die Groe der
Datenpunkte von dem Kdérpergewicht abhangt. Das ist wie gesagt nicht sinnvoll, sondern
redundant, da das Kdérpergewicht ja bereits auf der x-Achse dargestellt wird. Wie auch
mit palettte= und markers= kdnnen wir die GroRe der Datenpunkte mit sizes= anpassen.
SO geben wir mit sizes=(10, 250) an, dass die kleinste und grof3te Gréle der
Datenpunkte 10 bzw. 250 sein soll.

Spatestens jetzt wird es allerdings auch noch nétig die Legende auf3erhalb des Plots zu
positionieren. Das geht mit plt.legend(bbox to_anchor=). Das Argument

bbox_to _anchor=(1, 1) gibt die Position der Legende an, allerdings anders als bei loc=
mit zwei Zahlen. Der erste Wert gibt die Position der Legende auf der x-Achse an, wobei
1 der rechte Rand des Plots ist. Der zweite Wert gibt die Position der Legende auf der y-
Achse an, wobei 1 der obere Rand des Plots ist. Wir setzen die Position der Legende
hier also auf die obere, rechte Ecke des Plots. Mit “die Position der Legende” ist dabei
genauer gesagt die Position der linken, oberen Ecke der Legende gemeint. (AuRerdem
gibt es noch ein standardmafigen Abstand zwischen der Legende und dem Plot, der mit
borderaxespad= angepasst werden konnte.) Wenn wir nur dies tun, wird die Legende
aber Uber den Plot hinausragen, also abgeschnitten werden. Das kénnen wir verhindern,
indem wir plt.tight layout() aufrufen, welches den Plot so anpasst, dass alle
Elemente vollstandig dargestellt werden.

plt.figure(figsize=(5, 4))
sns.scatterplot(
data=df2,
x="'body mass g',
y="'flipper_ length _mm',
hue="'species',

style="'sex',
alpha=0.5,
s=90

)
plt.xlabel('Korpergewicht (g)')

15

) BioMath

15/18

plt.ylabel('Flossenlange (mm)')

plt.legend(bbox_ to anchor=(1, 1))
plt.tight layout()

plt.show()
230 -
220 -
€
€ 210 -
(O]
(@)}
C
‘S 200 A PR <
C
[0 9.
a X
2 1901 = HDee s~ %
L@ M)
YR D%
180 - ". L2
170 -

3000 4000 5000 6000
Kérpergewicht (g)

plt.figure(figsize=(5, 4))
sns.scatterplot(

)

data=df2,

x="'body mass g',
y="'flipper length mm',
hue="'species',

style="'sex"',

alpha=0.5,
size='body mass g', # <-----
sizes=(10, 250) I

plt.xlabel('Kérpergewicht (g)')
plt.ylabel('Flossenlange (mm)')

plt.legend(bbox to anchor=(1, 1))
plt.tight layout()

16

xXo

species
Adelie
Chinstrap
Gentoo
sex
female
male

< BioMath

16/18

plt.show()

230 A

N N N

o = N

o o o
1 1 1

Flossenlange (mm)

=

O

o
1

180 -

170 -

P X
<%
\:«:p.

2
.
%

(0

%

&
)

X
A
AR
o
22
4
A

A
’\’

3000

4000 5000 6000

Kérpergewicht (g)

species
Adelie
Chinstrap
Gentoo
body _mass g
3000
3600
4200
4800
5400
6000

sex
female
male

© Weitere Ressourcen

» Matplotlib Legend Tutorial || matplotlib legend outside of graph || Matplotlib Tips

10ptional weil iiber Kursinhalt hinaus! - Aus Kapitel “4. Visualization with
Matplotlib” des frei verfuigbaren Buchs “Python Data Science Handbook”

» Abschnitt “2 Simple Scatter Plots”
» Abschnitt “6 Customizing Plot Legends”

Ubungen

Erstelle einen Scatterplot, der folgende oben separat vorgenommenen Anderungen

vereint:

+ die Pinguinart und das Geschlecht in der Legende mit deutschen Labels

 die zwei Labels der Variablen in der Legende fett drucken

« die Farben und Symbole selbst auswahlen. Wahle dabei Farben und Symbole, die wir

bisher noch nicht verwendet haben.

17

< BioMath

17 /18

https://youtu.be/lnfGvdCqGYs?si=UQDi393BsDVpMSG8
https://jakevdp.github.io/PythonDataScienceHandbook/index.html
https://jakevdp.github.io/PythonDataScienceHandbook/04.02-simple-scatter-plots.html
https://jakevdp.github.io/PythonDataScienceHandbook/04.06-customizing-legends.html

Erhéhe auRerdem die GroRe des Plots auf 8x5 Zoll und positioniere die Legende in der
oberen linken Ecke.

* (A) Geschafft

Nutze den urspringlichen, vollstdndigen df und probiere eine finfte Variable (neben
x=body mass_g, y=flipper length mm, color=species und style=sex) in den Plot mittels
size= zu integrieren. Tue das mit mindestens einer numerischen und einer kategorialen
Variable.

* (A) Geschafft
Schaue dir folgenden Code an und Uberlege dir, was er macht. Fiuhre ihn dann aus und

Uberprufe deine Vermutung anhand der erzeugten Abbildung.

df mw = df.groupby('species', as_index=False, observed=True)[['body mass g',
"flipper length mm']].mean()

plot parameter = {

'x': 'body mass g',
'y': 'flipper_length mm',
'hue': 'species'

}

plt.figure(figsize=(8, 5))
scatter = sns.scatterplot(
data=df,
**plot parameter
)
scatter = sns.scatterplot(
data=df mw,
**plot _parameter,
marker='P"',
s=400,
legend=False
)
plt.xlabel('Kérpergewicht (g)')
plt.ylabel('Flossenlange (mm)')
plt.show()

* (A) Geschafft

18

< BioMath

18/18

	Pinguin Daten
	Scatterplot
	Basisversion
	Mit Farbe
	Mit Farbe und Form
	Feinheiten anpassen

	Größe & Transparenz

	Übungen

