
1 / 7

Verschiedenes anderes zur
Virsualisierung
by Woche 13

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns

Dieses Kapitel ist das letzte in diesem Kurs, welches sich vorrangig auf die
Visualisierung von Daten fokussiert. Als Abschluss werden hier verschiedene, nicht
unbedingt zusammenhängende Themen behandelt, Tips gegeben und Ausblicke auf
weiterführende Themen gegeben.

Layout/Erscheinungsbild
In den bisherigen Kapiteln haben wir uns hauptsächlich darauf konzentriert Diagramme
zu erstellen, die die Daten möglichst gut darstellen. Wir haben uns also auf den Teil des
Diagramms konzentriert, der die Daten enthält. Man kann aber natürlich auch
entscheiden den Rest des Diagramms, also das Layout/Erscheinungsbild auch bekannt
als “aesthetics”, anzupassen. Das kann dazu beitragen, dass das Diagramm besser
verstanden wird oder einfach schöner bzw. professioneller aussieht.

Eine Möglichkeit dies mit möglichst wenig Aufwand zu erreichen, ist die Verwendung von
vorgefertigten Themes. Seaborn bietet hierfür die set_theme-Funktion an. Was auch
immer mit set_theme festegelegt wird, gilt für alle folgenden Diagramme. Die Funktion
hat verschiedene Argumente, die das Aussehen des Diagramms beeinflussen. Beim
Argument style hat man folgende Optionen: dark, darkgrid, ticks, white and whitegrid.

sns.set_theme(style="dark")
plt.figure()
sns.barplot(x=["A", "B"], y=[1, 3])
plt.show()

1

2 / 7

sns.set_theme(style="darkgrid")
plt.figure()
sns.barplot(x=["A", "B"], y=[1, 3])
plt.show()

2

3 / 7

sns.set_theme(style="ticks")
plt.figure()
sns.barplot(x=["A", "B"], y=[1, 3])
plt.show()

sns.set_theme(style="white")
plt.figure()
sns.barplot(x=["A", "B"], y=[1, 3])
plt.show()

3

4 / 7

sns.set_theme(style="whitegrid")
plt.figure()
sns.barplot(x=["A", "B"], y=[1, 3])
plt.show()

4

5 / 7

Möchte man das Aussehen des Diagramms noch weiter anpassen, können die anderen
Argumente genutzt werden. Insbesondere mit rc können viele Einstellungen
vorgenommen werden. Hier ein paar Beispiele:

meine_rc = {
 "axes.spines.right": False,
 "axes.spines.top": False,
 "axes.edgecolor": "red"
}
sns.set_theme(
 style="ticks",
 rc = meine_rc
)
plt.figure()
sns.barplot(x=["A", "B"], y=[1, 3])
plt.show()

meine_rc = {
 "axes.facecolor": "green",
 "xtick.top": True,
 "xtick.labeltop": True
}
sns.set_theme(
 style="ticks",
 rc = meine_rc
)

5

6 / 7

plt.figure()
sns.barplot(x=["A", "B"], y=[1, 3])
plt.show()

Um zu sehen, welche Einstellungen möglich und sind und wie diese standardmäßig
eingestellt sind, könnte man auf plt.rcParams mit z.B. folgende Schleife zugreifen. Um
die Ausgabe nicht unnötig lang zu machen, wird hier nur nach Einstellungen gesucht, die
mit “xtick” beginnen - also Einstellungen speziell für die Ticks (Markierungen) an der x-
Achse. Ihr könnte aber natürlich einfach das if key.startswith("xtick"): löschen um
alle Einstellungen zu sehen.

for key in plt.rcParams:
 if key.startswith("xtick"):
 print(f"{key}: {plt.rcParams[key]}")

xtick.alignment: center
xtick.bottom: True
xtick.color: .15
xtick.direction: out
xtick.labelbottom: True
xtick.labelcolor: inherit
xtick.labelsize: 11.0
xtick.labeltop: True
xtick.major.bottom: True

6

7 / 7

xtick.major.pad: 3.5
xtick.major.size: 6.0
xtick.major.top: True
xtick.major.width: 1.25
xtick.minor.bottom: True
xtick.minor.ndivs: auto
xtick.minor.pad: 3.4
xtick.minor.size: 4.0
xtick.minor.top: True
xtick.minor.visible: False
xtick.minor.width: 1.0
xtick.top: True

Zeit für flexibles Ausprobieren
Darüber hinaus haben wir natürlich noch Unmengen von Aspekten der
Datenvisualisierung nicht behandeln können. So haben wir nicht mal alle der gängigsten
Diagrammtypen erzeugt. Anstatt dies nun nachzuholen, soll hier einfach etwas mehr
Raum und Zeit als sonst sein um sich mit den weiteren Ressourcen unten zu
beschäftigen.

Die ersten drei sind noch obligatorisch für alle und speziell die 14 Tipps in Friends Don’t
Let Friends Make Bad Graphs sind sehr empfehlenswert und dürften euch in
bestimmten Situationen einen Vorsprung gegenüber anderen verschaffen.

Hat man erstmal ein gewisses Level in der Datenvisualisierung erreicht, lernt man
meines Erachtens am meisten durch den Versuch eine bestimmte Visualisierung
nachzubauen. Im Idealfall gibt es für die gewünschte Visualisierung auch den
zugrundeliegenden Code, ggf. sogar als Tutorial aufbereitet. Genau sowas findet ihr in
Best Python Chart Examples, sodass ihr - je nachdem wie viel Zeit ihr investieren wollt -
euch an verschiedenen Diagrammen versuchen könnt.

 Weitere Ressourcen

• Dokumentation: seaborn.set_theme
• Dokumentation: Controlling figure aesthetics
• Friends Don’t Let Friends Make Bad Graphs

!Optional weil über Kursinhalt hinaus!

• Matplotlib cheatsheets and handouts
• Seaborn cheat sheet - A guide to most graphs
• Best Python Chart Examples
‣ Daraus z.B. dieser hier

7

https://seaborn.pydata.org/generated/seaborn.set_theme.html
https://seaborn.pydata.org/tutorial/aesthetics.html
https://github.com/cxli233/FriendsDontLetFriends?tab=readme-ov-file#friends-dont-let-friends-make-bad-graphs
https://matplotlib.org/cheatsheets/
https://www.kaggle.com/code/albertovidalrod/seaborn-cheat-sheet-a-guide-to-most-graphs
https://python-graph-gallery.com/best-python-chart-examples/
https://python-graph-gallery.com/web-ridgeline-by-text/

	Layout/Erscheinungsbild
	Zeit für flexibles Ausprobieren

