Verschiedenes anderes zur

Virsualisierung
by Woche 13

import numpy as np

import matplotlib.pyplot as plt
import pandas as pd

import seaborn as sns

Dieses Kapitel ist das letzte in diesem Kurs, welches sich vorrangig auf die
Visualisierung von Daten fokussiert. Als Abschluss werden hier verschiedene, nicht
unbedingt zusammenhangende Themen behandelt, Tips gegeben und Ausblicke auf
weiterfihrende Themen gegeben.

Layout/Erscheinungsbild

In den bisherigen Kapiteln haben wir uns hauptsachlich darauf konzentriert Diagramme
zu erstellen, die die Daten mdglichst gut darstellen. Wir haben uns also auf den Teil des
Diagramms konzentriert, der die Daten enthalt. Man kann aber natarlich auch
entscheiden den Rest des Diagramms, also das Layout/Erscheinungsbild auch bekannt
als “aesthetics”, anzupassen. Das kann dazu beitragen, dass das Diagramm besser
verstanden wird oder einfach schéner bzw. professioneller aussieht.

Eine Moglichkeit dies mit mdglichst wenig Aufwand zu erreichen, ist die Verwendung von
vorgefertigten Themes. Seaborn bietet hierfur die set_theme-Funktion an. Was auch
immer mit set_theme festegelegt wird, gilt fir alle folgenden Diagramme. Die Funktion
hat verschiedene Argumente, die das Aussehen des Diagramms beeinflussen. Beim
Argument style hat man folgende Optionen: dark, darkgrid, ticks, white and whitegrid.

sns.set theme(style="dark")
plt.figure()

sns.barplot(x=["A", "B"1, y=[1, 31)
plt.show()

< BioMath



3.0
2.5
2.0
1.5
1.0
0.0
A B

sns.set theme(style="darkgrid")
plt.figure()

sns.barplot(x=["A", "B"]1, y=[1, 3])
plt.show()

3.0
25
2.0
1.5
1.0
0.0
A B

< BioMath

2/7



< BioMath

sns.set theme(style="ticks")
plt.figure()

sns.barplot(x=["A", "B"]1, y=[1, 3])
plt.show()

3.0 1

2.5 4

2.0 A

1.5 4

1.0 4

0.5

0.0 -

sns.set theme(style="white")
plt.figure()

sns.barplot(x=["A", "B"], y=[1, 31])
plt.show()

3/7



3.0

2.5

2.0

1.5

1.0

0.5

0.0

sns.set theme(style="whitegrid")
plt.figure()

sns.barplot(x=["A", "B"]1, y=[1, 3])
plt.show()

3.0

2.5

20

1.5

1.0

0.5

0.0

< BioMath

417



Mdchte man das Aussehen des Diagramms noch weiter anpassen, kénnen die anderen
Argumente genutzt werden. Insbesondere mit rc kdnnen viele Einstellungen
vorgenommen werden. Hier ein paar Beispiele:

meine rc = {
"axes.spines.right": False,
"axes.spines.top": False,
"axes.edgecolor": "red"

}

sns.set theme(
style="ticks",
rc = meine_rc

)

plt.figure()

sns.barplot(x=["A", "B"1, y=[1, 31)

plt.show()

3.0
2.5
2.0 A
1.5 4
1.0

0.5

0.0 -

meine rc = {
"axes.facecolor": "green",
"xtick.top": True,
"xtick.labeltop": True

}

sns.set theme(
style="ticks",
rc = meine_rc

< BioMath

5/7



plt.figure()
sns.barplot(x=["A", "B"]1, y=[1, 3])
plt.show()

A B

Um zu sehen, welche Einstellungen mdglich und sind und wie diese standardmafig
eingestellt sind, kdnnte man auf plt.rcParams mit z.B. folgende Schleife zugreifen. Um
die Ausgabe nicht unnétig lang zu machen, wird hier nur nach Einstellungen gesucht, die
mit “xtick” beginnen - also Einstellungen speziell fur die Ticks (Markierungen) an der x-
Achse. lhr kdnnte aber natirlich einfach das if key.startswith("xtick"): ldschen um
alle Einstellungen zu sehen.

for key in plt.rcParams:
if key.startswith("xtick"):
print(f"{key}: {plt.rcParams[key]}")

xtick.alignment: center
xtick.bottom: True
xtick.color: .15
xtick.direction: out
xtick.labelbottom: True
xtick.labelcolor: inherit
xtick.labelsize: 11.0
xtick.labeltop: True
xtick.major.bottom: True

< BioMath

6/7



xtick.major.pad: 3.5
xtick.major.size: 6.0
xtick.major.top: True
xtick.major.width: 1.25
xtick.minor.bottom: True
xtick.minor.ndivs: auto
xtick.minor.pad: 3.4
xtick.minor.size: 4.0
xtick.minor.top: True
xtick.minor.visible: False
xtick.minor.width: 1.0
xtick.top: True

Zeit fur flexibles Ausprobieren

Darlber hinaus haben wir natirlich noch Unmengen von Aspekten der
Datenvisualisierung nicht behandeln kénnen. So haben wir nicht mal alle der gangigsten
Diagrammtypen erzeugt. Anstatt dies nun nachzuholen, soll hier einfach etwas mehr
Raum und Zeit als sonst sein um sich mit den weiteren Ressourcen unten zu
beschaftigen.

Die ersten drei sind noch obligatorisch fiir alle und speziell die 14 Tipps in Friends Don'’t
Let Friends Make Bad Graphs sind sehr empfehlenswert und dirften euch in
bestimmten Situationen einen Vorsprung gegenuber anderen verschaffen.

Hat man erstmal ein gewisses Level in der Datenvisualisierung erreicht, lernt man
meines Erachtens am meisten durch den Versuch eine bestimmte Visualisierung
nachzubauen. Im Idealfall gibt es fur die gewlinschte Visualisierung auch den
zugrundeliegenden Code, ggf. sogar als Tutorial aufbereitet. Genau sowas findet ihr in
Best Python Chart Examples, sodass ihr - je nachdem wie viel Zeit ihr investieren wollt -
euch an verschiedenen Diagrammen versuchen konnt.

© Weitere Ressourcen

* Dokumentation: seaborn.set_theme
» Dokumentation: Controlling figure aesthetics
* Friends Don’t Let Friends Make Bad Graphs

10ptional weil liber Kursinhalt hinaus!

+ Matplotlib cheatsheets and handouts
» Seaborn cheat sheet - A guide to most graphs
* Best Python Chart Examples

» Daraus z.B. dieser hier

) BioMath

717


https://seaborn.pydata.org/generated/seaborn.set_theme.html
https://seaborn.pydata.org/tutorial/aesthetics.html
https://github.com/cxli233/FriendsDontLetFriends?tab=readme-ov-file#friends-dont-let-friends-make-bad-graphs
https://matplotlib.org/cheatsheets/
https://www.kaggle.com/code/albertovidalrod/seaborn-cheat-sheet-a-guide-to-most-graphs
https://python-graph-gallery.com/best-python-chart-examples/
https://python-graph-gallery.com/web-ridgeline-by-text/

	Layout/Erscheinungsbild
	Zeit für flexibles Ausprobieren

