< BioMath

Long und Wide Format - Pivot und Melt

by Woche 14

import numpy as np

import matplotlib.pyplot as plt
import pandas as pd

import seaborn as sns

In diesem Kapitel werden wir den Unterschied zwischen Daten im Long und Wide
Format kennenlernen und wie wir zwischen den beiden Formaten hin und her
konvertieren kbnnen.

Long und Wide Format

Von Anfang an muss klar sein, dass exakt dieselben Daten/Informationen im Long und
Wide Format gespeichert werden kénnen. Der Unterschied liegt ausschlief3lich in der
Struktur der Daten. Am schnellsten kann dies anhand eines Beispiels verstanden
werden. das folgende Bild zeigt die gleichen Daten im Long und Wide Format, wobei
Team die Index-Spalte ist.

1/13

) BioMath

Wide Format Long Format
Team Points Assists |Rebounds Team Variable Value
A 88 12 22 A Points 88
B 91 17 28 A Assists 12
C 99 24 30 A Rebounds 22
D 94 28 31 B Points 91
B Assists 17
B Rebounds 28
C Points 99
C Assists 24
C Rebounds 30
D Points 94
D Assists 28
D Rebounds 31

Quelle: Statology

Das Wide Format ist das Format, in dem die meisten Menschen intuitiv ihre Daten
speichern. In diesem Format sind die Spalten die Variablen und die Zeilen die
Beobachtungen. Es gibt demnach mehr Spalten und die Tabelle ist im Vergleich breiter
(wide).

Beim Verarbeiten von Daten ist es aber haufig so, dass wir die Daten im Long Format
bendtigen. In diesem Format sind die Variablen in einer Spalte und die Werte in einer
anderen Spalte. Es demnach mehr Zeilen und die Tabelle ist im Vergleich langer (long).

Wir hatten beispielsweise in Kapitel 6.1 die Noten der beiden Personen im Long Format.
Prinzipiell hatten wir die Daten ja auch im Wide Format speichern kdnnen, indem wir die
Noten der beiden Personen in zwei Spalten speichern. Allerdings waren unsere Daten
dann doch etwas untypisch, da es keine gemeinsame ID-Spalte gibt wie oben in der
Abbildung “Team”. Solche Spalte wollen wir deshalb hier hinzufiigen und sie

2/13

https://www.statology.org/long-vs-wide-data/

“Klassenarbeit” nennen. AuRerdem nehmen wir drei Personen und dafir weniger Noten

pro Person

df noten long = pd.DataFrame({
'Klassenarbeit':
'Geschichte', 'Deutsch',

'Person': ['A', 'A',
'Note': [2, 3, 3, 2, 2, 2, 3, 2, 11,

})

df noten wide =

'Klassenarbeit':

'Note A': [2,

'‘Note B': [2,

‘Note C': [3,
1)

df noten_wide

Klassenarbeit
0 Deutsch
1 Mathe

2 Geschichte

df noten_ long

Klassenarbeit
Deutsch

Mathe
Geschichte
Deutsch

Mathe
Geschichte
Deutsch

Mathe
Geschichte

0O NO UL, WNRFEO

Ein Beispiel wofir das Long Format besser geeignet ist, ist auch direkt das Erzeugen

pd.DataFrame ({
['Deutsch',

3, 31,
2, 2],
2’ 1]’

['Deutsch',
'Mathe',
IAI’

'Mathe',

'Mathe',

Note A Note B Note C

Person

OO N mw> > >

2
3
3

Note

N WNDNNWWDN

2
2
2

3
2
1

der uns bereits bekannten Abbildung:

777

'Geschichte',

'Geschichte'],
IBI’ IBI’ IBI’ ICI’ ICI’

'Geschichte'],

'Deutsch’,

cl,

'Mathe',

< BioMath

3/13

plt.figure()
sns.boxplot (
x="'Person',
y="'Note"',
data=df noten_ long
)
plt.show()

3.00 A
2.75 A

2.50 A
2.25 A

2.00 A

Note

1.75 A

1.50 A
1.25 A

1.00 A

A B C
Person

Andererseits gibt es auch Situationen, in denen man das Wide Format benétigt. Es geht
nicht so sehr darum welches Format besser ist, sondern darum, dass man in der Lage
sein sollte schnell zwischen den beiden Formaten zu konvertieren.

Konvertierung

Die Konvertierung von Wide nach Long und umgekehrt wird in Pandas mit den
Funktionen pivot und melt durchgefiihrt. Diese Begriffe sind auch in anderen
Programmiersprachen bekannt.

Hier ist eine groRartige Darstellung des Prinzips, allerdings muss der im Gif gezeigte
Code ignoriert werden, da es R Code ist.

Melt: Wide zu Long

Mit melt konvertieren wir also Daten von Wide nach Long. Das bedeutet, dass wir -
abgesehen von den Index-Spalten - eine beliebige Anzahl von Spalten in dann nur noch
zwei Spalten konvertieren.

< BioMath

4/13

Die Funktion melt wird auf einem DataFrame aufgerufen und benétigt mindestens zwei
Argumente: id _vars und value vars. id_vars sind die Spalten, die als Index verwendet
werden, also vor und nach der Konvertierung den einzelnen Wert idetifizieren.

value vars sind die Spalten, die in die Long-Form konvertiert werden, also nach der
Konvertierung nur noch in einer Spalte vorliegen sollen.

Standardmafig werden die neuen beiden Spalten variable und value genannt. Diese
Namen kénnen aber auch geandert werden, indem wir zusatzlich noch die zwei
Argumente var_name und value_name Ubergeben. Wie die Namen schon andeuten, wird
var_name dann statt variable und value name statt value verwendet.

df noten wide.melt(
id vars='Klassenarbeit',
value vars=['Note A', 'Note B', 'Note C']

Klassenarbeit variable value
Deutsch Note A

Mathe Note A
Geschichte Note A
Deutsch Note B

Mathe Note B
Geschichte Note B
Deutsch Note C

Mathe Note C
Geschichte Note C

0O NO UL, WN PO
R N WNNMNNWWN

df noten wide.melt(
id vars='Klassenarbeit',
value vars=['Note A', 'Note B', 'Note C'],
var_name='Person',
value name='Note'

Klassenarbeit Person Note
Deutsch Note A

Mathe Note A
Geschichte Note A
Deutsch Note B

Mathe Note B
Geschichte Note B
Deutsch Note C

O Uk WN K O
W NNNWWN

) BioMath

5/13

< BioMath

7 Mathe Note C 2
8 Geschichte Note C 1

Pivot: Long zu Wide
Mit pivot konvertieren wir also Daten von Long nach Wide. Das bedeutet, dass wir -
abgesehen von den Index-Spalten - aus zwei Spalten in mehrere Spalten konvertieren.

Die Funktion pivot wird auf einem DataFrame aufgerufen und bendétigt mindestens drei
Argumente entgegen: index, columns und values. index ist die Spalte, die als Index
verwendet wird, columns ist die Spalte, deren Inhalt dann die mehreren Spalten im Wide
Format definiert und values ist die Spalte, die die zugehdérigen Werte enthalt.

df noten long.pivot(
index='Klassenarbeit',
columns="'Person',
values="'Note'

Person A B C
Klassenarbeit

Deutsch 2 2 3
Geschichte 3 2 1
Mathe 3 2 2

6/13

1 Anmerkung zu Standartoutput von pivot

Der oben gezeigte Ansatz mit pivot hat prinzipiell getan was er sollte. Allerdings
kann man bei genauerem Hinsehen feststellen, dass die Spalteniberschriften in
mehreren Zeilen angezeigt werden. Das liegt daran, dass die Spalteniberschriften
ein Multiindex sind. Das mag in manchen Situationen hilfreich sein, ist meines
Erachtens aber dennoch eher ein unpraktisches Standardverhalten. Oft bendtige ich
die zum-Wide-Format-konvertierten Daten namlich als ganz normalen DataFrame
und hange deshalb recht haufig reset_index() und rename_axis(None, axis=1) an,
sodass man schlichtweg das erhalt, was einige von euch hier vielleicht auch erwartet
haben:

df _noten long.pivot(
index='Klassenarbeit',
columns="'Person',
values="'Note'

) .reset _index().rename axis(None, axis=1)

Klassenarbeit A B C
0 Deutsch 2 2 3
1 Geschichte 3 2 1
2 Mathe 3 2 2

Einfach ausgedriickt bewirtk reset_index(), dass der Multiindex aufgeldst wird,
sodass es wieder nur eine normale Index-Spalte gibt. Dann wird mit
rename_axis(None, axis=1) bewirkt, dass die Spaltenlberschrift der Index-Spalte
entfernt wird.

Es sei angemerkt, dass es noch die artverwandten Funktionen stack und unstack gibt,
auf die hier - abgesehen von den weiteren Ressourcen unten - aber nicht genauer
eingegangen wird.

Ein praktisches Beispiel

Um die Konvertierung von Wide nach Long und umgekehrt zu verdeutlichen, betrachten
wir ein Beispiel mit Verkaufsdaten wie es auch in der Praxis vorkommen kénnte. Wir
haben Daten von vier Filialen und zwei Produkten, die in den Monaten Januar und
Februar verkauft wurden und die Daten liegen in eingem ungunstigen Format vor. Das
Zielformat ist direkt daneben gezeigt.

Ausgangsformat

) BioMath

7/13

https://pandas.pydata.org/docs/user_guide/advanced.html

df start = pd.DataFrame({

'Filiale': ['

N,

|O|,

‘P A Jan': [150, 250,
'P_A Feb': [160, 260,
'P B Jan': [100, 200,
'P_ B Feb': [110, 210,

})

df start

Filiale P_A Jan

N

W N = o

0
S
W

Zielformat

df ziel = pd.DataFrame({

150
250
200
300

|S|

’ IWI]I

200, 300],

210

’ 310] ’

150, 2501,
160, 260],

P A Feb P_B Jan

160
260
210
310

100
200
150
250

'Filiale': np.repeat(['N', 'O', 'S"',
'"Produkt': np.tile(['A',

'Jan': [150,
'Feb': [160,
19

df_ziel

100, 250, 200, 200,
110, 260, 216, 210, 160, 310, 260]

Filiale Produkt

N

NOoOuU DR WNRO
=E=Tunwnmwoo=2

Um vom Ausgangsformat zum Zielformat zu gelangen, kénnen wir folgende Schritte
durchflhren: Zuerst konvertieren wir die Daten von Wide nach Long:

W > wWrw?>rw>

Jan
150
100
250
200
200
150
300
250

dfl = df start.melt(
id vars='Filiale',
value vars=['P A Jan',
var_name='Produkt Monat',

Feb
160
110
260
210
210
160
310
260

‘B']1, 4),

'P A Feb',

P B Feb
110
210
160
260

IWI]’ 2)'

‘P B Jan',

150, 300, 250],

‘P B Feb'],

< BioMath

8/13

value name='Verkauf'

dfl

Filiale Produkt Monat Verkauf

0 N P A Jan 150
1 0 P_A Jan 250
2 S P A Jan 200
3 W P A Jan 300
4 N P _A Feb 160
5 0 P_A Feb 260
6 S P A Feb 210
7 W P A Feb 310
8 N P B Jan 100
9 0 P B Jan 200
10 S P B Jan 150
11 W P_B Jan 250
12 N P B Feb 110
13 0 P B Feb 210
14 S P B Feb 160
15 W P B Feb 260

Noch eleganter ware es Ubrigens, wenn wir die Spalten fur value vars= automatisch
extrahiert hatten. Spatestens wenn wir nicht nur von 2 Monaten und/oder 2 Produkten
ausgehen, wird klar, dass man diese Liste nicht manuell erzeugen méchte. Um diese
Spaltennamen automatisch zu extrahieren, hatten wir beispielsweise produkt spalten =
[spalte for spalte in df start.columns if spalte.startswith('P_')] verwenden
kénnen und dann value vars=produkt_spalten Ubergeben kdénnen.

Als nachstes missen wir die Spalte Produkt Monat trennen, sodass wir zwei separate
Spalten Produkt und Monat vorliegen haben. Das kénnen wir mit der Methode
str.split(' ', expand=True) durchfiihren, sodass das Symbol den Trennpunkt
festlegt und expand=True dafiir sorgt, dass erzeugten Spalten nicht in einer Liste mit je
zwei Elementen, sondern als zwei separate Spalten vorliegen. Es gibt allerdings das
Problem, dass ja alle Werte in der Spalte Produkt Monat zwei Mal das _ Symbol
enthalten. Da wir den Préafix P_ aber sowieso nicht in den Werten haben wollen, kdbnnen
wir diesen einfach zuerst mit str. removeprefix()entfernen.

dfl['Produkt Monat'] = dfl['Produkt Monat'].str.removeprefix('P_")
dfla = dfl.copy()

) BioMath

9/13

dfl[['Produkt',
dflb = dfl.

copy ()

dfl = dfl.drop(columns=['Produkt Monat'])

dfla

Filiale Produkt Monat Verkauf

0 N
1 0
2 S
3 W
4 N
5 0
6 S
7 W
8 N
9 0
10 S
11 W
12 N
13 0
14 S
15 W
dflb
Filiale
0 N
1 0
2 S
3 W
4 N
5 0
6 S
7 W
8 N
9 0
10 S
11 W
12 N

A Jan
A Jan
A Jan
A Jan
A Feb
A Feb
A Feb
A Feb
B Jan
B Jan
B Jan
B Jan
B Feb
B Feb
B _Feb
B Feb

Produkt Monat
A Jan
A Jan
A Jan
A Jan
A Feb
A Feb
A Feb
A Feb
B Jan
B Jan
B Jan
B Jan
B Feb

150
250
200
300
160
260
210
310
100
200
150
250
110
210
160
260

Verkauf
150
250
200
300
160
260
210
310
100
200
150
250
110

‘Monat']] = dfl['Produkt Monat'].str.split(' ', expand=True)

Produkt Monat

A

W Wwww?>?>>>r>>>r>> >

10

Jan
Jan
Jan
Jan
Feb
Feb
Feb
Feb
Jan
Jan
Jan
Jan
Feb

) BioMath

10/13

13 0 B Feb 210
14 S B Feb 160
15 W B Feb 260
dfl

Filiale Verkauf Produkt Monat

0 N 150 A Jan
1 0 250 A Jan
2 S 200 A Jan
3 W 300 A Jan
4 N 160 A Feb
5 0 260 A Feb
6 S 210 A Feb
7 W 310 A Feb
8 N 100 B Jan
9 0 200 B Jan
10 S 150 B Jan
11 W 250 B Jan
12 N 110 B Feb
13 0 210 B Feb
14 S 160 B Feb
15 W 260 B Feb

SchlieRlich kénnen wir nun die Daten von Long nach Wide konvertieren um das
Zielformat zu erhalten. Streng genommen sind die Monatsspalten zwar noch nicht richtig
(sondern wurde automatisch alphabetisch) sortiert, aber den Schritt sparen wir uns hier.

dfl.pivot(
index=['Filiale', 'Produkt'],
columns="'Monat"',
values='Verkauf'

o)

) .reset _index().rename _axis(None, axis=1)

Filiale Produkt Feb Jan

0 N A 160 150
1 N B 110 100
2 0 A 260 250
3 0 B 210 200
4 S A 210 200
5 S B 160 150
6 W A 310 300
7 W B 260 250

11

Feb
Feb
Feb

) BioMath

11/13

) BioMath

Transponieren

SchlieBlich passt es in diesem Kapitel auch gut noch das Transponieren von
DataFrames zu erwahnen. Transponieren ist einfacher und schneller erklart als die
Konvertierung zwischen Long und Wide, da lediglich die Zeilen und Spalten vertauscht
werden. Das kann mit der Methode .transpose() durchgefiihrt werden. Hier ein Beispiel:

df noten_wide

Klassenarbeit Note A Note B Note C

0 Deutsch 2 2 3
1 Mathe 3 2 2
2 Geschichte 3 2 1

df noten_wide.transpose()

0 1 2
Klassenarbeit Deutsch Mathe Geschichte
Note A 2 3 3
Note B 2 2 2
Note C 3 2 1

Transponieren funktioniert allerdings besser, wenn es eine “richtige” Index-Spalte gibt:

df noten wide.set index('Klassenarbeit')

Note A Note B Note C

Klassenarbeit

Deutsch 2 2 3
Mathe 3 2 2
Geschichte 3 2 1

df noten wide.set index('Klassenarbeit').transpose()

Klassenarbeit Deutsch Mathe Geschichte

Note A 2 3 3
Note B 2 2 2
Note C 3 2 1

12

12/13

< BioMath

© Weitere Ressourcen

» Stack, Unstack, Melt, Pivot - Pandas
» How to Reshape Dataframes | Pivot, Stack, Melt and More

Ubungen
Bringe folgenden DataFrame in ein Format mit Spalten flir Stadt, Jahr und Temperatur.
Konvertiere ihn danach wieder zurtck in das Ursprungsformat.

df = pd.DataFrame({
'Stadt': ['Berlin', 'Minchen', 'Hamburg', 'Koéln'],
'Temp _2020': [16.5, 11.0, 9.5, 10.0],
'Temp_2021': [11.2, 11.5, 10.0, 10.8]

1)

* (A) Geschafft

Bringe diesen DataFrame...

df = pd.DataFrame({
'Produkt': ['Produkt A', 'Produkt B'],
'Region': ['Nord', 'Sud'],
'Ql1_2020': [150, 200],
'Q2 2020': [180, 210],
'Ql 2021': [160, 190],
'Q2_2021': [170, 220]
1)

...in dieses Format:

Produkt Region Jahr Quartal Verkaufszahlen

© Produkt A Nord 2020 Q1 150
1 Produkt B Sud 2020 01 200
2 Produkt A Nord 2020 Q2 180
3 Produkt B Siad 2020 Q2 210
4 Produkt A Nord 2021 01 160
5 Produkt B Sid 2021 Q1 190
6 Produkt A Nord 2021 Q2 170
7 Produkt B Sid 2021 Q2 220

* (A) Geschafft

13

13/13

https://youtu.be/kJsiiPK5sxs?si=EJYx7zKXsKK2dldh
https://youtu.be/M3oB2urOHXY?si=XdeHJo3-g9zxfRpF

	Long und Wide Format
	Konvertierung
	Melt: Wide zu Long
	Pivot: Long zu Wide
	Ein praktisches Beispiel

	Transponieren
	Übungen

