
1 / 13

Long und Wide Format - Pivot und Melt
by Woche 14

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns

In diesem Kapitel werden wir den Unterschied zwischen Daten im Long und Wide
Format kennenlernen und wie wir zwischen den beiden Formaten hin und her
konvertieren können.

Long und Wide Format
Von Anfang an muss klar sein, dass exakt dieselben Daten/Informationen im Long und
Wide Format gespeichert werden können. Der Unterschied liegt ausschließlich in der
Struktur der Daten. Am schnellsten kann dies anhand eines Beispiels verstanden
werden. das folgende Bild zeigt die gleichen Daten im Long und Wide Format, wobei
Team die Index-Spalte ist.

1

2 / 13

Quelle: Statology

Das Wide Format ist das Format, in dem die meisten Menschen intuitiv ihre Daten
speichern. In diesem Format sind die Spalten die Variablen und die Zeilen die
Beobachtungen. Es gibt demnach mehr Spalten und die Tabelle ist im Vergleich breiter
(wide).

Beim Verarbeiten von Daten ist es aber häufig so, dass wir die Daten im Long Format
benötigen. In diesem Format sind die Variablen in einer Spalte und die Werte in einer
anderen Spalte. Es demnach mehr Zeilen und die Tabelle ist im Vergleich länger (long).

Wir hatten beispielsweise in Kapitel 6.1 die Noten der beiden Personen im Long Format.
Prinzipiell hätten wir die Daten ja auch im Wide Format speichern können, indem wir die
Noten der beiden Personen in zwei Spalten speichern. Allerdings waren unsere Daten
dann doch etwas untypisch, da es keine gemeinsame ID-Spalte gibt wie oben in der
Abbildung “Team”. Solche Spalte wollen wir deshalb hier hinzufügen und sie

2

https://www.statology.org/long-vs-wide-data/

3 / 13

“Klassenarbeit” nennen. Außerdem nehmen wir drei Personen und dafür weniger Noten
pro Person

df_noten_long = pd.DataFrame({
 'Klassenarbeit': ['Deutsch', 'Mathe', 'Geschichte', 'Deutsch', 'Mathe',
'Geschichte', 'Deutsch', 'Mathe', 'Geschichte'],
 'Person': ['A', 'A', 'A', 'B', 'B', 'B', 'C', 'C', 'C'],
 'Note': [2, 3, 3, 2, 2, 2, 3, 2, 1],
})

df_noten_wide = pd.DataFrame({
 'Klassenarbeit': ['Deutsch', 'Mathe', 'Geschichte'],
 'Note_A': [2, 3, 3],
 'Note_B': [2, 2, 2],
 'Note_C': [3, 2, 1],
})

df_noten_wide

 Klassenarbeit Note_A Note_B Note_C
0 Deutsch 2 2 3
1 Mathe 3 2 2
2 Geschichte 3 2 1

df_noten_long

 Klassenarbeit Person Note
0 Deutsch A 2
1 Mathe A 3
2 Geschichte A 3
3 Deutsch B 2
4 Mathe B 2
5 Geschichte B 2
6 Deutsch C 3
7 Mathe C 2
8 Geschichte C 1

Ein Beispiel wofür das Long Format besser geeignet ist, ist auch direkt das Erzeugen
der uns bereits bekannten Abbildung:

???

3

4 / 13

plt.figure()
sns.boxplot(
 x='Person',
 y='Note',
 data=df_noten_long
)
plt.show()

Andererseits gibt es auch Situationen, in denen man das Wide Format benötigt. Es geht
nicht so sehr darum welches Format besser ist, sondern darum, dass man in der Lage
sein sollte schnell zwischen den beiden Formaten zu konvertieren.

Konvertierung
Die Konvertierung von Wide nach Long und umgekehrt wird in Pandas mit den
Funktionen pivot und melt durchgeführt. Diese Begriffe sind auch in anderen
Programmiersprachen bekannt.

Hier ist eine großartige Darstellung des Prinzips, allerdings muss der im Gif gezeigte
Code ignoriert werden, da es R Code ist.

Melt: Wide zu Long
Mit melt konvertieren wir also Daten von Wide nach Long. Das bedeutet, dass wir -
abgesehen von den Index-Spalten - eine beliebige Anzahl von Spalten in dann nur noch
zwei Spalten konvertieren.

4

5 / 13

Die Funktion melt wird auf einem DataFrame aufgerufen und benötigt mindestens zwei
Argumente: id_vars und value_vars. id_vars sind die Spalten, die als Index verwendet
werden, also vor und nach der Konvertierung den einzelnen Wert idetifizieren.
value_vars sind die Spalten, die in die Long-Form konvertiert werden, also nach der
Konvertierung nur noch in einer Spalte vorliegen sollen.

Standardmäßig werden die neuen beiden Spalten variable und value genannt. Diese
Namen können aber auch geändert werden, indem wir zusätzlich noch die zwei
Argumente var_name und value_name übergeben. Wie die Namen schon andeuten, wird
var_name dann statt variable und value_name statt value verwendet.

df_noten_wide.melt(
 id_vars='Klassenarbeit',
 value_vars=['Note_A', 'Note_B', 'Note_C']

)

 Klassenarbeit variable value
0 Deutsch Note_A 2
1 Mathe Note_A 3
2 Geschichte Note_A 3
3 Deutsch Note_B 2
4 Mathe Note_B 2
5 Geschichte Note_B 2
6 Deutsch Note_C 3
7 Mathe Note_C 2
8 Geschichte Note_C 1

df_noten_wide.melt(
 id_vars='Klassenarbeit',
 value_vars=['Note_A', 'Note_B', 'Note_C'],
 var_name='Person',
 value_name='Note'
)

 Klassenarbeit Person Note
0 Deutsch Note_A 2
1 Mathe Note_A 3
2 Geschichte Note_A 3
3 Deutsch Note_B 2
4 Mathe Note_B 2
5 Geschichte Note_B 2
6 Deutsch Note_C 3

5

6 / 13

7 Mathe Note_C 2
8 Geschichte Note_C 1

Pivot: Long zu Wide
Mit pivot konvertieren wir also Daten von Long nach Wide. Das bedeutet, dass wir -
abgesehen von den Index-Spalten - aus zwei Spalten in mehrere Spalten konvertieren.

Die Funktion pivot wird auf einem DataFrame aufgerufen und benötigt mindestens drei
Argumente entgegen: index, columns und values. index ist die Spalte, die als Index
verwendet wird, columns ist die Spalte, deren Inhalt dann die mehreren Spalten im Wide
Format definiert und values ist die Spalte, die die zugehörigen Werte enthält.

df_noten_long.pivot(
 index='Klassenarbeit',
 columns='Person',
 values='Note'
)

Person A B C
Klassenarbeit
Deutsch 2 2 3
Geschichte 3 2 1
Mathe 3 2 2

6

7 / 13

 Anmerkung zu Standartoutput von pivot

Der oben gezeigte Ansatz mit pivot hat prinzipiell getan was er sollte. Allerdings
kann man bei genauerem Hinsehen feststellen, dass die Spaltenüberschriften in
mehreren Zeilen angezeigt werden. Das liegt daran, dass die Spaltenüberschriften
ein MultiIndex sind. Das mag in manchen Situationen hilfreich sein, ist meines
Erachtens aber dennoch eher ein unpraktisches Standardverhalten. Oft benötige ich
die zum-Wide-Format-konvertierten Daten nämlich als ganz normalen DataFrame
und hänge deshalb recht häufig reset_index() und rename_axis(None, axis=1) an,
sodass man schlichtweg das erhält, was einige von euch hier vielleicht auch erwartet
haben:

df_noten_long.pivot(
 index='Klassenarbeit',
 columns='Person',
 values='Note'
).reset_index().rename_axis(None, axis=1)

 Klassenarbeit A B C
0 Deutsch 2 2 3
1 Geschichte 3 2 1
2 Mathe 3 2 2

Einfach ausgedrückt bewirtk reset_index(), dass der MultiIndex aufgelöst wird,
sodass es wieder nur eine normale Index-Spalte gibt. Dann wird mit
rename_axis(None, axis=1) bewirkt, dass die Spaltenüberschrift der Index-Spalte
entfernt wird.

Es sei angemerkt, dass es noch die artverwandten Funktionen stack und unstack gibt,
auf die hier - abgesehen von den weiteren Ressourcen unten - aber nicht genauer
eingegangen wird.

Ein praktisches Beispiel
Um die Konvertierung von Wide nach Long und umgekehrt zu verdeutlichen, betrachten
wir ein Beispiel mit Verkaufsdaten wie es auch in der Praxis vorkommen könnte. Wir
haben Daten von vier Filialen und zwei Produkten, die in den Monaten Januar und
Februar verkauft wurden und die Daten liegen in eingem ungünstigen Format vor. Das
Zielformat ist direkt daneben gezeigt.

Ausgangsformat

7

https://pandas.pydata.org/docs/user_guide/advanced.html

8 / 13

df_start = pd.DataFrame({
 'Filiale': ['N', 'O', 'S', 'W'],
 'P_A_Jan': [150, 250, 200, 300],
 'P_A_Feb': [160, 260, 210, 310],
 'P_B_Jan': [100, 200, 150, 250],
 'P_B_Feb': [110, 210, 160, 260],
})

df_start

 Filiale P_A_Jan P_A_Feb P_B_Jan P_B_Feb
0 N 150 160 100 110
1 O 250 260 200 210
2 S 200 210 150 160
3 W 300 310 250 260

Zielformat

df_ziel = pd.DataFrame({
 'Filiale': np.repeat(['N', 'O', 'S', 'W'], 2),
 'Produkt': np.tile(['A', 'B'], 4),
 'Jan': [150, 100, 250, 200, 200, 150, 300, 250],
 'Feb': [160, 110, 260, 210, 210, 160, 310, 260]
})

df_ziel

 Filiale Produkt Jan Feb
0 N A 150 160
1 N B 100 110
2 O A 250 260
3 O B 200 210
4 S A 200 210
5 S B 150 160
6 W A 300 310
7 W B 250 260

Um vom Ausgangsformat zum Zielformat zu gelangen, können wir folgende Schritte
durchführen: Zuerst konvertieren wir die Daten von Wide nach Long:

df1 = df_start.melt(
 id_vars='Filiale',
 value_vars=['P_A_Jan', 'P_A_Feb', 'P_B_Jan', 'P_B_Feb'],
 var_name='Produkt_Monat',

8

9 / 13

 value_name='Verkauf'
)

df1

 Filiale Produkt_Monat Verkauf
0 N P_A_Jan 150
1 O P_A_Jan 250
2 S P_A_Jan 200
3 W P_A_Jan 300
4 N P_A_Feb 160
5 O P_A_Feb 260
6 S P_A_Feb 210
7 W P_A_Feb 310
8 N P_B_Jan 100
9 O P_B_Jan 200
10 S P_B_Jan 150
11 W P_B_Jan 250
12 N P_B_Feb 110
13 O P_B_Feb 210
14 S P_B_Feb 160
15 W P_B_Feb 260

Noch eleganter wäre es übrigens, wenn wir die Spalten für value_vars= automatisch
extrahiert hätten. Spätestens wenn wir nicht nur von 2 Monaten und/oder 2 Produkten
ausgehen, wird klar, dass man diese Liste nicht manuell erzeugen möchte. Um diese
Spaltennamen automatisch zu extrahieren, hätten wir beispielsweise produkt_spalten =
[spalte for spalte in df_start.columns if spalte.startswith('P_')] verwenden
können und dann value_vars=produkt_spalten übergeben können.

Als nächstes müssen wir die Spalte Produkt_Monat trennen, sodass wir zwei separate
Spalten Produkt und Monat vorliegen haben. Das können wir mit der Methode
str.split('_', expand=True) durchführen, sodass das _ Symbol den Trennpunkt
festlegt und expand=True dafür sorgt, dass erzeugten Spalten nicht in einer Liste mit je
zwei Elementen, sondern als zwei separate Spalten vorliegen. Es gibt allerdings das
Problem, dass ja alle Werte in der Spalte Produkt_Monat zwei Mal das _ Symbol
enthalten. Da wir den Präfix P_ aber sowieso nicht in den Werten haben wollen, können
wir diesen einfach zuerst mit str.removeprefix()entfernen.

Entferne Präfix in Produkt_Monat
df1['Produkt_Monat'] = df1['Produkt_Monat'].str.removeprefix('P_')
df1a = df1.copy()

Trenne Produkt_Monat in zwei neue Spalten

9

10 / 13

df1[['Produkt', 'Monat']] = df1['Produkt_Monat'].str.split('_', expand=True)
df1b = df1.copy()

Entferne Produkt_Monat
df1 = df1.drop(columns=['Produkt_Monat'])

Nach Entfernen Präfix
df1a

 Filiale Produkt_Monat Verkauf
0 N A_Jan 150
1 O A_Jan 250
2 S A_Jan 200
3 W A_Jan 300
4 N A_Feb 160
5 O A_Feb 260
6 S A_Feb 210
7 W A_Feb 310
8 N B_Jan 100
9 O B_Jan 200
10 S B_Jan 150
11 W B_Jan 250
12 N B_Feb 110
13 O B_Feb 210
14 S B_Feb 160
15 W B_Feb 260

Nach Trennen in Produkt & Monat
df1b

 Filiale Produkt_Monat Verkauf Produkt Monat
0 N A_Jan 150 A Jan
1 O A_Jan 250 A Jan
2 S A_Jan 200 A Jan
3 W A_Jan 300 A Jan
4 N A_Feb 160 A Feb
5 O A_Feb 260 A Feb
6 S A_Feb 210 A Feb
7 W A_Feb 310 A Feb
8 N B_Jan 100 B Jan
9 O B_Jan 200 B Jan
10 S B_Jan 150 B Jan
11 W B_Jan 250 B Jan
12 N B_Feb 110 B Feb

10

11 / 13

13 O B_Feb 210 B Feb
14 S B_Feb 160 B Feb
15 W B_Feb 260 B Feb

Nach Entfernen von Produkt_Monat
df1

 Filiale Verkauf Produkt Monat
0 N 150 A Jan
1 O 250 A Jan
2 S 200 A Jan
3 W 300 A Jan
4 N 160 A Feb
5 O 260 A Feb
6 S 210 A Feb
7 W 310 A Feb
8 N 100 B Jan
9 O 200 B Jan
10 S 150 B Jan
11 W 250 B Jan
12 N 110 B Feb
13 O 210 B Feb
14 S 160 B Feb
15 W 260 B Feb

Schließlich können wir nun die Daten von Long nach Wide konvertieren um das
Zielformat zu erhalten. Streng genommen sind die Monatsspalten zwar noch nicht richtig
(sondern wurde automatisch alphabetisch) sortiert, aber den Schritt sparen wir uns hier.

df1.pivot(
 index=['Filiale', 'Produkt'],
 columns='Monat',
 values='Verkauf'
).reset_index().rename_axis(None, axis=1)

 Filiale Produkt Feb Jan
0 N A 160 150
1 N B 110 100
2 O A 260 250
3 O B 210 200
4 S A 210 200
5 S B 160 150
6 W A 310 300
7 W B 260 250

11

12 / 13

Transponieren
Schließlich passt es in diesem Kapitel auch gut noch das Transponieren von
DataFrames zu erwähnen. Transponieren ist einfacher und schneller erklärt als die
Konvertierung zwischen Long und Wide, da lediglich die Zeilen und Spalten vertauscht
werden. Das kann mit der Methode .transpose() durchgeführt werden. Hier ein Beispiel:

df_noten_wide

 Klassenarbeit Note_A Note_B Note_C
0 Deutsch 2 2 3
1 Mathe 3 2 2
2 Geschichte 3 2 1

df_noten_wide.transpose()

 0 1 2
Klassenarbeit Deutsch Mathe Geschichte
Note_A 2 3 3
Note_B 2 2 2
Note_C 3 2 1

Transponieren funktioniert allerdings besser, wenn es eine “richtige” Index-Spalte gibt:

df_noten_wide.set_index('Klassenarbeit')

 Note_A Note_B Note_C
Klassenarbeit
Deutsch 2 2 3
Mathe 3 2 2
Geschichte 3 2 1

df_noten_wide.set_index('Klassenarbeit').transpose()

Klassenarbeit Deutsch Mathe Geschichte
Note_A 2 3 3
Note_B 2 2 2
Note_C 3 2 1

12

13 / 13

 Weitere Ressourcen

• Stack, Unstack, Melt, Pivot - Pandas
• How to Reshape Dataframes | Pivot, Stack, Melt and More

Übungen
Bringe folgenden DataFrame in ein Format mit Spalten für Stadt, Jahr und Temperatur.
Konvertiere ihn danach wieder zurück in das Ursprungsformat.

df = pd.DataFrame({
 'Stadt': ['Berlin', 'München', 'Hamburg', 'Köln'],
 'Temp_2020': [10.5, 11.0, 9.5, 10.0],
 'Temp_2021': [11.2, 11.5, 10.0, 10.8]
})

• (A) Geschafft

Bringe diesen DataFrame…

df = pd.DataFrame({
 'Produkt': ['Produkt_A', 'Produkt_B'],
 'Region': ['Nord', 'Süd'],
 'Q1_2020': [150, 200],
 'Q2_2020': [180, 210],
 'Q1_2021': [160, 190],
 'Q2_2021': [170, 220]
})

…in dieses Format:

 Produkt Region Jahr Quartal Verkaufszahlen
0 Produkt_A Nord 2020 Q1 150
1 Produkt_B Süd 2020 Q1 200
2 Produkt_A Nord 2020 Q2 180
3 Produkt_B Süd 2020 Q2 210
4 Produkt_A Nord 2021 Q1 160
5 Produkt_B Süd 2021 Q1 190
6 Produkt_A Nord 2021 Q2 170
7 Produkt_B Süd 2021 Q2 220

• (A) Geschafft

13

https://youtu.be/kJsiiPK5sxs?si=EJYx7zKXsKK2dldh
https://youtu.be/M3oB2urOHXY?si=XdeHJo3-g9zxfRpF

	Long und Wide Format
	Konvertierung
	Melt: Wide zu Long
	Pivot: Long zu Wide
	Ein praktisches Beispiel

	Transponieren
	Übungen

