Merge und Join
by Woche 14

import numpy as np

import matplotlib.pyplot as plt
import pandas as pd

import seaborn as sns

In diesem Kapitel werden wir uns mit dem Zusammenfiihren von Daten, also von
mehreren DataFrames beschaftigen. Dazu lernen wir die Funktionen pd.concat(),
pd.merge() und pd.join() kennen.

Concat

Die Funktion pd.concat() (concatinate; verketten) ermdéglicht es, zwei oder mehr
DataFrames sozusagen schlichtweg aufeinander bzw. nebeneinander zu kleben.
Standardmalfig kénnen wir einfach DataFrames als Liste tGbergeben und sie werden
aufeinander geklebt/gestapelt.

dfl = pd.DataFrame({
'SpA': [1, 2],
'SpB': [10, 11]

1)
dfl

SpA SpB
0 1 10
1 2 11

df2 = pd.DataFrame({
'SpA': [3, 4],
'SpB': [12, 13]

1)
df2

SpA SpB
0 3 12
1 4 13

< BioMath

1/15

pd.concat([dfl, df2])

SpA SpB
0 1 10
1 2 11
0 3 12
1 4 13

Es sei darauf hingewiesen, dass die Indizes der DataFrames beibehalten werden. Auch
sie werden also einfach aufeinander geklebt. So kommt es, dass wir oben nun zwei
Zeilen mit Index 0 und 1 haben. Natirlich kann man die Indices weiterhin mit .iloc()
und der Zeilennummer 0-3 ansprechen, aber die Indexlabel, auf welche man mit . loc()
zugreift, sind nun doppelt vorhanden. Um dies zu verhinden, kénnten wir

nachtraglich .index.reset() anwenden oder aber direkt innerhalb von pd.concat() das
Argument ignore_index=True setzen.

Ebenfalls nitzlich ist das Argument keys= mit dem wir daflir sorgen kénnen, dass auch
nach dem Zusammenflihren der DataFrames noch erkennbar ist, aus welchem
DataFrame die Daten stammen. Diese Keys werden allerdings mal wieder
standardmafig als Multiindex gesetzt. Falls dies nicht gewilinscht ist, misste
wiederum .reset_index() angehangt werden.

pd.concat (
[df1l, df2],
ignore_index=True

)

SpA SpB
0 1 10
1 2 11
2 3 12
3 4 13
pd.concat (
[dfl, df2],

keys=['dfl', 'df2']
)

) BioMath

2/15

https://pandas.pydata.org/docs/user_guide/advanced.html

SpA SpB
dfl 0 1 10
1 2 11
df2 0 3 12
1 4 13

(

pd.concat (

[dfl, df2],

keys=['dfl', 'df2']

)

.reset _index()
.rename(columns={
‘level 0': 'Quelle’,
‘level 1': 'Quelle idx'
1)

Quelle Quelle idx SpA SpB

0 dfl 0 1
1 dfl 1 2
2 df2 0 3
3 df2 1 4

Man kann pd.concat () Ubrigens auch nutzen, falls die DataFrames unterschiedliche
Spalten haben. In diesem Fall werden die fehlenden Spalten einfach mit NaN aufgefulit.

df3 = pd.DataFrame({
'SpA': [5, 6],
'SpC': [14, 15]

1)
df3

SpA SpC
0 5 14
1 6 15

df4 = pd.DataFrame({
'SpD': [16, 17]
1)

df4

10
11
12
13

< BioMath

3/15

SpD
16
17

pd.concat(
[dfl, df2, df3, df4]

)

P ORrPr OoORr OoPFr o

Und schlie3lich kénnen wir die DataFrames auch nebeneinander statt aufeinander
kleben. Dazu missen wir das Argument axis= setzen. Standardmagig ist axis=0
(axis='rows' oder axis="'index' bewirken dasselbe), was bedeutet, dass die
DataFrames aufeinander gestapelt werden. Mit axis=1 (oder axis="'columns') werden die
DataFrames nebeneinander geklebt.

SpA

o Ul b WN B
[clolNoNoNoNo)

NaN
NaN

SpB
10.0
11.0
12.0
13.0

NaN

NaN

NaN

NaN

pd.concat (

[dfl, df3],
axis='rows'

)

P o P o

SpA

o U1 N

SpB
10.0
11.0

NaN

NaN

pd.concat(

[dfl, df3],

SpC
NaN
NaN
NaN
NaN
14.0
15.0
NaN
NaN

SpC
NaN
NaN
14.0
15.0

axis='columns'

)

SpD
NaN
NaN
NaN
NaN
NaN
NaN
16.0
17.0

) BioMath

4/15

) BioMath

SpA SpB SpA SpC
0 1 10 5 14
1 2 11 6 15

Merge/Join

In der Praxis muss man haufig Daten zusammenfihren, die nicht einfach nur
aufeinander gestapelt oder nebeneinander geklebt werden kénnen. Stattdessen missen
sie anhand von gemeinsamen Spaltenwerten/Indices zusammengefihrt werden. Diese
Art des Zusammenfuhrens wird nicht nur in Python als Merge oder Join bezeichnet.
Tatsachlich gibt es sowohl pd.merge() als auch pd.join() in Pandas. Wir werden uns
hier auf pd.merge () konzentrieren, da es flexibler ist und mehr Optionen bietet,
wohingegen pd.join() nur eine spezielle Form des Mergens, also ein Shortcut fur einen
bestimmten Fall, ist. Abgesehen von diesen beiden expliziten Funktionen werden die
Ausdriicke “Zwei DataFrames mergen” und “Zwei DataFrames joinen” oft synonym
verwendet.

Gehen wir erstmal davon aus, dass es zwei Dataframes (df_x & df_y) gibt, die eine
gemeinsame Spalte (id) haben. AuRer dieser gemeinsamen Spalte haben sie jeweils
noch eine weitere Spalte (x bzw. y), mit Daten die der jeweils andere Dataframe nicht
hat. Davon ausgehend, dass zumindest einige ids in beiden Dataframes vorkommen,
kénnen wir die Dataframes anhand der gemeinsamen Spalte zusammenfihren. In
jedem Fall ginge dies mit

* pd.merge(df x, df y, on='id', how='..."') oder
e df x.merge(df y, on='id', how='..."'),

allerdings gibt es dabei Uberraschend viele Méglichkeiten wie genau (how=) dies
passieren soll.

Inner Join

Die erste hier erwdhnte Art des Mergens/Joinens sei der inner join. Mit how="inner"
werden nur die ids beibehalten, die in beiden Dataframes vorkommen.

df x = pd.DataFrame({
'id': [1, 2, 31,

"x': ['x1','x2','x3"]
1)
df x

id X
0 1 x1

5/15

) BioMath

df y = pd.DataFrame({
‘id': [1, 2, 4],
Iyl: [Iyll’lyzllly4l]
b

df y

id vy
yl
y2
v4

=
AN -

pd.merge (
df x, df vy,
on="id",
how="'inner'

)

id x vy
0 1 x1 yl
1 2 X2 y2

Left Join

Beim left join werden mit how='1eft' alle ids aus dem linken Dataframe (df_x)
beibehalten, wahrend diejenigen aus dem rechten Dataframe (df_y) die nicht im linken
vorkommen, mit NaN aufgeflllt werden. In diesem Beispiel wird auch gezeigt, dass ggf. in
einem Dataframe eine id mehrfach vorkommen kann. In diesem Fall wird die Zeile aus
dem linken Dataframe fir jede Zeile aus dem rechten Dataframe dupliziert.

df x = pd.DataFrame({
'id': [1, 2, 31,
IXI: [IX1I’IX2I’IX3I]
1)

df x

6/15

< BioMath

id X
0 1 x1
1 2 X2
2 3 x3

df y = pd.DataFrame({
'id': [1, 2, 4, 2],
lyl: [|y1|’|y2|’ly4|’|y5|]

df y

id y
yl
y2
y4
y5

W N RO
N BN R

pd.merge(
df x, df vy,
on="'id",
how="'Tleft'
)

#

id x y
x1 yl
X2 y2
X2 y5
x3 NaN

W N P o
W NN B

Right Join
Analog zum left join werden beim right join mit how="'right' alle ids aus dem rechten

Dataframe (df_y) beibehalten, wahrend diejenigen aus dem linken Dataframe (df x) die
nicht im rechten vorkommen, mit NaN aufgeflllt werden.

df x = pd.DataFrame({
‘id': [1, 2, 3],
IXI: [Ix1I'IX2I’IX3I]

})

df x

77115

< BioMath

id X
0 1 x1
1 2 X2
2 3 x3

df y = pd.DataFrame({
'id': [1, 2, 4],
|y|: [|y1|’|y2|’|y4|]

df y

id y
yl
y2
y4

=
AN B

pd.merge (
df x, df vy,
on="'id",
how="'right"
)

id X y
1 x1 vyl
2 X2 y2
4 NaN y4

N P O©

Outer Join

Beim outer join (auch full join genannt) werden mit how="'outer"' alle ids aus beiden
Dataframes beibehalten. Diejenigen, die in nur einem der beiden Dataframes
vorkommen, werden mit NaN aufgefillt.

df x = pd.DataFrame({
‘id': [1, 2, 3],
"x': ['x1l','x2','x3"]
1)

df x

8/15

< BioMath

id X
0 1 x1
1 2 X2
2 3 x3

df y = pd.DataFrame({
'id': [1, 2, 4],
|y|: [|y1|’|y2|’|y4|]

1)
df y
id y
0 1 yl
1 2 y2
2 4 y4
pd.merge (
df x, df vy,
on="'id",
how="outer"'
)
#
id X y
0 1 x1 vyl
1 2 X2 y2
2 3 x3 NaN
3 4 NaN vy4

ID-Spalten mit unterschiedlichen Namen

Bisher haben wir angenommen, dass die gemeinsame Spalte in beiden Dataframes den
gleichen Namen hat, sodass wir diesen namen in on= Ubergeben kdnnen. Dies ist jedoch
in der Praxis ofter mal nicht der Fall. Obwohl es sich also um dieselben IDs handelt,
heil’en die Spalten in den Dataframes unterschiedlich.

df x = pd.DataFrame({
‘id x': [1, 2, 3],
IXI: [lel’llellx?)l]

})

df x

9/15

) BioMath

id x X
0 1 x1
1 2 x2
2 3 x3

df y = pd.DataFrame({
'id y': [1, 2, 4],
'yt ['ylt,ty2', 'y4']
1)

df y

Zum Glick ist es aber auch nicht unbedingt notwendig, sodass wir also nicht die Spalten
vorher umbenennen mussen. Mit left_on= und right_on= kdnnen wir explizit angeben,
welche Spalten in den Dataframes zusammengefuhrt werden sollen. Allerdings sind
dann ggf. doch noch Schritte in der Nachbearbeitung notwendig, um die Spalten zu
bereinigen.

pd.merge(
df x, df vy,
how="'1left"',
left on="id x',
right on="id y'
)

id x x idy y
0 1 x1 1.0 yl
1 2 X2 2.0 y2
2 3 x3 NaN NaN
(
df x
.merge(df vy,
how="1left"',

left on="id x',

10

10/15

) BioMath

right on='id y')
.drop(columns=["'id y'])

]
.rename(columns={'id x': 'id'})

id X y
0 1 x1 vyl
1 2 x2 y2
2 3 x3 NaN

Hier noch ein Tipp: Zum Beispiel bei diesem outer join sollten wir nicht denselben Ansatz
zur Nachbereitung der Daten wie gerade anwenden (also id_y ldschen und id x
umbenennen), sondern entweder doch die Spalten vorher umbenennen oder aber im
Nachgang .combine first() nutzen:

new_df = pd.merge(
df x, df vy,
how="'outer"',
left on="id x',
right on='id y'
)

new df

id x X idy y
6 1.0 x1 1.0 vyl
1 2.0 x2 2.0 y2
2 3.0 x3 NaN NaN
3 NaN NaN 4.0 y4

new df['id'] = (
new df['id x']
.combine first(new df['id y'l])

)

new df = new df[['id', 'x', 'y'l]

new df

id X y
0 1.0 x1 yl
1 2.0 X2 y2

11

11/15

< BioMath

x3 NaN

2 3.0
3 4.0 NaN y4

Mehrere gemeinsame Spalten

Bisher haben wir angenommen, dass es nur eine gemeinsame Spalte gibt. In der Praxis
kann es aber auch vorkommen, dass es die Kombination aus mehreren Spalten ist, die
die Daten eindeutig identifiziert. In diesem Fall kdnnen wir einfach eine Liste von
Spaltennamen Ubergeben.

df x = pd.DataFrame({

'Vorname': ['Max', 'Loki', 'Loki'l],
'"Nachname': ['Meier', 'Meier', 'Muller'],
'Gehalt': [1000, 2000, 3000]

1)

df x

Vorname Nachname Gehalt
0 Max Meier 1000
1 Loki Meier 2000
2 Loki Miller 3000

df y = pd.DataFrame({

'Vorname': ['Ute', 'Loki', 'Loki'l],
'Nachname': ['Meier', 'Meier', 'Schmidt'],
'Rente': [500, 1000, 1500]

1)

df y

Vorname Nachname Rente
0 Ute Meier 500
1 Loki Meier 1000
2 Loki Schmidt 1500

pd.merge (
df x, df vy,
how="'outer"',
on=['Vorname', 'Nachname']

)

12

12/15

) BioMath

Vorname Nachname Gehalt Rente

0 Loki Meier 2000.0 1000.0
1 Loki Miller 3000.0 NaN
2 Loki Schmidt NaN 1500.0
3 Max Meier 1000.0 NaN
4 Ute Meier NaN 500.0

join() VS. merge()
Zum Abschluss sei noch erwahnt, dass join() ein Shortcut flir merge() ist, wenn die
gemeinsame Spalte der Dataframes der Index ist.

df x = pd.DataFrame({
IXI: [|X1|'|X2|’IX3I]}'
index=['Nord', 'Ost', 'West'])

df x

Nord x1
Ost X2
West x3

df y = pd.DataFrame({
'y'r ['yl','y2','y3",'y4'1},
index=["'Nord', 'Ost','Sud"', 'West'])

df y

y
Nord vyl

Ost y2
Sid y3
West vy4

Tatsachlich kann man mit pd.merge() namlich auch Dataframes mergen, die Indizes als
gemeinsame Spalte haben. Dazu muss man left_index=True und right index=True

setzen anstatt auf spezifische Spaltennamen zu referenzieren. Anstatt dies zu tun kann
aber eben auch pd.join() genutzt werden.

df x.merge(
df vy,

13

13/15

left index=True,
right index=True,
how="'outer'

)

X Yy
Nord x1 vyl
Ost X2 y2
Sid NaN y3
West x3 vy4

df x.join(df_y, how='outer')

X Yy
Nord x1 vyl
Ost X2 y2
Sid NaN y3
West x3 vy4

© Weitere Ressourcen

* How to combine DataFrames in Pandas | Merge, Join, Concat, & Append

Ubungen

Bringe die Informationen aus den folgenden beiden Datensatzen so zusammen, dass
die Start_Saison und Tore in einer gemeinsamen Tabelle stehen und ausschlieflich die
Spieler, die in beiden Datensatzen vorkommen, angezeigt werden.

dfl = pd.DataFrame({
'Start Saison': [2008, 2011, 2008, 2014, 2010, 2021],

'Vorname': ['Thomas', 'Manuel', 'Toni', 'Toni', 'David', 'David'],
'"Nachname': ['Miller', 'Neuer', 'Kroos', 'Kroos', 'Alaba', 'Alaba'l,
'Verein': ['Bayern', 'Bayern', 'Bayern', 'Madrid', 'Bayern', 'Madrid']
1)
df2 = pd.DataFrame({
'Verein': ['Bayern', 'Bayern', 'Madrid', 'Bayern', 'Madrid'],
14

< BioMath

14 /15

https://youtu.be/wzN1UyfRSWI?si=wT33VyQsXXgtabkx

* (A) Geschafft

	Concat
	Merge/Join
	Inner Join
	Left Join
	Right Join
	Outer Join
	ID-Spalten mit unterschiedlichen Namen
	Mehrere gemeinsame Spalten
	join() vs. merge()

	Übungen

