
1 / 15

Merge und Join
by Woche 14

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns

In diesem Kapitel werden wir uns mit dem Zusammenführen von Daten, also von
mehreren DataFrames beschäftigen. Dazu lernen wir die Funktionen pd.concat(),
pd.merge() und pd.join() kennen.

Concat
Die Funktion pd.concat() (concatinate; verketten) ermöglicht es, zwei oder mehr
DataFrames sozusagen schlichtweg aufeinander bzw. nebeneinander zu kleben.
Standardmäßig können wir einfach DataFrames als Liste übergeben und sie werden
aufeinander geklebt/gestapelt.

df1 = pd.DataFrame({
 'SpA': [1, 2],
 'SpB': [10, 11]
})

df1

 SpA SpB
0 1 10
1 2 11

df2 = pd.DataFrame({
 'SpA': [3, 4],
 'SpB': [12, 13]
})

df2

 SpA SpB
0 3 12
1 4 13

1

2 / 15

#

pd.concat([df1, df2])

 SpA SpB
0 1 10
1 2 11
0 3 12
1 4 13

Es sei darauf hingewiesen, dass die Indizes der DataFrames beibehalten werden. Auch
sie werden also einfach aufeinander geklebt. So kommt es, dass wir oben nun zwei
Zeilen mit Index 0 und 1 haben. Natürlich kann man die Indices weiterhin mit .iloc()
und der Zeilennummer 0-3 ansprechen, aber die Indexlabel, auf welche man mit .loc()
zugreift, sind nun doppelt vorhanden. Um dies zu verhinden, könnten wir
nachträglich .index.reset() anwenden oder aber direkt innerhalb von pd.concat() das
Argument ignore_index=True setzen.

Ebenfalls nützlich ist das Argument keys= mit dem wir dafür sorgen können, dass auch
nach dem Zusammenführen der DataFrames noch erkennbar ist, aus welchem
DataFrame die Daten stammen. Diese Keys werden allerdings mal wieder
standardmäßig als MultiIndex gesetzt. Falls dies nicht gewünscht ist, müsste
wiederum .reset_index() angehängt werden.

pd.concat(
 [df1, df2],
 ignore_index=True
)

 SpA SpB
0 1 10
1 2 11
2 3 12
3 4 13

pd.concat(
 [df1, df2],
 keys=['df1', 'df2']
)

2

https://pandas.pydata.org/docs/user_guide/advanced.html

3 / 15

 SpA SpB
df1 0 1 10
 1 2 11
df2 0 3 12
 1 4 13

(
 pd.concat(
 [df1, df2],
 keys=['df1', 'df2']
)
 .reset_index()
 .rename(columns={
 'level_0': 'Quelle',
 'level_1': 'Quelle_idx'
 })
)

 Quelle Quelle_idx SpA SpB
0 df1 0 1 10
1 df1 1 2 11
2 df2 0 3 12
3 df2 1 4 13

Man kann pd.concat() übrigens auch nutzen, falls die DataFrames unterschiedliche
Spalten haben. In diesem Fall werden die fehlenden Spalten einfach mit NaN aufgefüllt.

df3 = pd.DataFrame({
 'SpA': [5, 6],
 'SpC': [14, 15]
})

df3

 SpA SpC
0 5 14
1 6 15

df4 = pd.DataFrame({
 'SpD': [16, 17]
})

df4

3

4 / 15

 SpD
0 16
1 17

pd.concat(
 [df1, df2, df3, df4]
)

 SpA SpB SpC SpD
0 1.0 10.0 NaN NaN
1 2.0 11.0 NaN NaN
0 3.0 12.0 NaN NaN
1 4.0 13.0 NaN NaN
0 5.0 NaN 14.0 NaN
1 6.0 NaN 15.0 NaN
0 NaN NaN NaN 16.0
1 NaN NaN NaN 17.0

Und schließlich können wir die DataFrames auch nebeneinander statt aufeinander
kleben. Dazu müssen wir das Argument axis= setzen. Standardmäßig ist axis=0
(axis='rows' oder axis='index' bewirken dasselbe), was bedeutet, dass die
DataFrames aufeinander gestapelt werden. Mit axis=1 (oder axis='columns') werden die
DataFrames nebeneinander geklebt.

pd.concat(
 [df1, df3],
 axis='rows'
)

 SpA SpB SpC
0 1 10.0 NaN
1 2 11.0 NaN
0 5 NaN 14.0
1 6 NaN 15.0

pd.concat(
 [df1, df3],
 axis='columns'
)

4

5 / 15

 SpA SpB SpA SpC
0 1 10 5 14
1 2 11 6 15

Merge/Join
In der Praxis muss man häufig Daten zusammenführen, die nicht einfach nur
aufeinander gestapelt oder nebeneinander geklebt werden können. Stattdessen müssen
sie anhand von gemeinsamen Spaltenwerten/Indices zusammengeführt werden. Diese
Art des Zusammenführens wird nicht nur in Python als Merge oder Join bezeichnet.
Tatsächlich gibt es sowohl pd.merge() als auch pd.join() in Pandas. Wir werden uns
hier auf pd.merge() konzentrieren, da es flexibler ist und mehr Optionen bietet,
wohingegen pd.join() nur eine spezielle Form des Mergens, also ein Shortcut für einen
bestimmten Fall, ist. Abgesehen von diesen beiden expliziten Funktionen werden die
Ausdrücke “Zwei DataFrames mergen” und “Zwei DataFrames joinen” oft synonym
verwendet.

Gehen wir erstmal davon aus, dass es zwei Dataframes (df_x & df_y) gibt, die eine
gemeinsame Spalte (id) haben. Außer dieser gemeinsamen Spalte haben sie jeweils
noch eine weitere Spalte (x bzw. y), mit Daten die der jeweils andere Dataframe nicht
hat. Davon ausgehend, dass zumindest einige ids in beiden Dataframes vorkommen,
können wir die Dataframes anhand der gemeinsamen Spalte zusammenführen. In
jedem Fall ginge dies mit

• pd.merge(df_x, df_y, on='id', how='...') oder
• df_x.merge(df_y, on='id', how='...'),

allerdings gibt es dabei überraschend viele Möglichkeiten wie genau (how=) dies
passieren soll.

Inner Join
Die erste hier erwähnte Art des Mergens/Joinens sei der inner join. Mit how='inner'
werden nur die ids beibehalten, die in beiden Dataframes vorkommen.

df_x = pd.DataFrame({
 'id': [1, 2, 3],
 'x': ['x1','x2','x3']
})

df_x

 id x
0 1 x1

5

6 / 15

1 2 x2
2 3 x3

df_y = pd.DataFrame({
 'id': [1, 2, 4],
 'y': ['y1','y2','y4']
})

df_y

 id y
0 1 y1
1 2 y2
2 4 y4

pd.merge(
 df_x, df_y,
 on='id',
 how='inner'
)
#

 id x y
0 1 x1 y1
1 2 x2 y2

Left Join
Beim left join werden mit how='left' alle ids aus dem linken Dataframe (df_x)
beibehalten, während diejenigen aus dem rechten Dataframe (df_y) die nicht im linken
vorkommen, mit NaN aufgefüllt werden. In diesem Beispiel wird auch gezeigt, dass ggf. in
einem Dataframe eine id mehrfach vorkommen kann. In diesem Fall wird die Zeile aus
dem linken Dataframe für jede Zeile aus dem rechten Dataframe dupliziert.

df_x = pd.DataFrame({
 'id': [1, 2, 3],
 'x': ['x1','x2','x3']
})

df_x

6

7 / 15

 id x
0 1 x1
1 2 x2
2 3 x3

df_y = pd.DataFrame({
 'id': [1, 2, 4, 2],
 'y': ['y1','y2','y4','y5']
})

df_y

 id y
0 1 y1
1 2 y2
2 4 y4
3 2 y5

pd.merge(
 df_x, df_y,
 on='id',
 how='left'
)
#

 id x y
0 1 x1 y1
1 2 x2 y2
2 2 x2 y5
3 3 x3 NaN

Right Join
Analog zum left join werden beim right join mit how='right' alle ids aus dem rechten
Dataframe (df_y) beibehalten, während diejenigen aus dem linken Dataframe (df_x) die
nicht im rechten vorkommen, mit NaN aufgefüllt werden.

df_x = pd.DataFrame({
 'id': [1, 2, 3],
 'x': ['x1','x2','x3']
})

df_x

7

8 / 15

 id x
0 1 x1
1 2 x2
2 3 x3

df_y = pd.DataFrame({
 'id': [1, 2, 4],
 'y': ['y1','y2','y4']
})

df_y

 id y
0 1 y1
1 2 y2
2 4 y4

pd.merge(
 df_x, df_y,
 on='id',
 how='right'
)
#

 id x y
0 1 x1 y1
1 2 x2 y2
2 4 NaN y4

Outer Join
Beim outer join (auch full join genannt) werden mit how='outer' alle ids aus beiden
Dataframes beibehalten. Diejenigen, die in nur einem der beiden Dataframes
vorkommen, werden mit NaN aufgefüllt.

df_x = pd.DataFrame({
 'id': [1, 2, 3],
 'x': ['x1','x2','x3']
})

df_x

8

9 / 15

 id x
0 1 x1
1 2 x2
2 3 x3

df_y = pd.DataFrame({
 'id': [1, 2, 4],
 'y': ['y1','y2','y4']
})

df_y

 id y
0 1 y1
1 2 y2
2 4 y4

pd.merge(
 df_x, df_y,
 on='id',
 how='outer'
)
#

 id x y
0 1 x1 y1
1 2 x2 y2
2 3 x3 NaN
3 4 NaN y4

ID-Spalten mit unterschiedlichen Namen
Bisher haben wir angenommen, dass die gemeinsame Spalte in beiden Dataframes den
gleichen Namen hat, sodass wir diesen namen in on= übergeben können. Dies ist jedoch
in der Praxis öfter mal nicht der Fall. Obwohl es sich also um dieselben IDs handelt,
heißen die Spalten in den Dataframes unterschiedlich.

df_x = pd.DataFrame({
 'id_x': [1, 2, 3],
 'x': ['x1','x2','x3']
})

df_x

9

10 / 15

 id_x x
0 1 x1
1 2 x2
2 3 x3

df_y = pd.DataFrame({
 'id_y': [1, 2, 4],
 'y': ['y1','y2','y4']
})

df_y

 id_y y
0 1 y1
1 2 y2
2 4 y4

Zum Glück ist es aber auch nicht unbedingt notwendig, sodass wir also nicht die Spalten
vorher umbenennen müssen. Mit left_on= und right_on= können wir explizit angeben,
welche Spalten in den Dataframes zusammengeführt werden sollen. Allerdings sind
dann ggf. doch noch Schritte in der Nachbearbeitung notwendig, um die Spalten zu
bereinigen.

pd.merge(
 df_x, df_y,
 how='left',
 left_on='id_x',
 right_on='id_y'
)

#

 id_x x id_y y
0 1 x1 1.0 y1
1 2 x2 2.0 y2
2 3 x3 NaN NaN

(
 df_x
 .merge(df_y,
 how='left',
 left_on='id_x',

10

11 / 15

 right_on='id_y')
 .drop(columns=['id_y'])
 .rename(columns={'id_x': 'id'})
)

 id x y
0 1 x1 y1
1 2 x2 y2
2 3 x3 NaN

Hier noch ein Tipp: Zum Beispiel bei diesem outer join sollten wir nicht denselben Ansatz
zur Nachbereitung der Daten wie gerade anwenden (also id_y löschen und id_x
umbenennen), sondern entweder doch die Spalten vorher umbenennen oder aber im
Nachgang .combine_first() nutzen:

new_df = pd.merge(
 df_x, df_y,
 how='outer',
 left_on='id_x',
 right_on='id_y'
)

new_df

 id_x x id_y y
0 1.0 x1 1.0 y1
1 2.0 x2 2.0 y2
2 3.0 x3 NaN NaN
3 NaN NaN 4.0 y4

new_df['id'] = (
 new_df['id_x']
 .combine_first(new_df['id_y'])
)

new_df = new_df[['id', 'x', 'y']]

new_df

 id x y
0 1.0 x1 y1
1 2.0 x2 y2

11

12 / 15

2 3.0 x3 NaN
3 4.0 NaN y4

Mehrere gemeinsame Spalten
Bisher haben wir angenommen, dass es nur eine gemeinsame Spalte gibt. In der Praxis
kann es aber auch vorkommen, dass es die Kombination aus mehreren Spalten ist, die
die Daten eindeutig identifiziert. In diesem Fall können wir einfach eine Liste von
Spaltennamen übergeben.

df_x = pd.DataFrame({
 'Vorname': ['Max', 'Loki', 'Loki'],
 'Nachname': ['Meier', 'Meier', 'Müller'],
 'Gehalt': [1000, 2000, 3000]
})

df_x

 Vorname Nachname Gehalt
0 Max Meier 1000
1 Loki Meier 2000
2 Loki Müller 3000

df_y = pd.DataFrame({
 'Vorname': ['Ute', 'Loki', 'Loki'],
 'Nachname': ['Meier', 'Meier', 'Schmidt'],
 'Rente': [500, 1000, 1500]
})

df_y

 Vorname Nachname Rente
0 Ute Meier 500
1 Loki Meier 1000
2 Loki Schmidt 1500

pd.merge(
 df_x, df_y,
 how='outer',
 on=['Vorname', 'Nachname']
)

12

13 / 15

 Vorname Nachname Gehalt Rente
0 Loki Meier 2000.0 1000.0
1 Loki Müller 3000.0 NaN
2 Loki Schmidt NaN 1500.0
3 Max Meier 1000.0 NaN
4 Ute Meier NaN 500.0

join() vs. merge()
Zum Abschluss sei noch erwähnt, dass join() ein Shortcut für merge() ist, wenn die
gemeinsame Spalte der Dataframes der Index ist.

df_x = pd.DataFrame({
 'x': ['x1','x2','x3']},
 index=['Nord', 'Ost', 'West'])

df_x

 x
Nord x1
Ost x2
West x3

df_y = pd.DataFrame({
 'y': ['y1','y2','y3','y4']},
 index=['Nord','Ost','Süd','West'])

df_y

 y
Nord y1
Ost y2
Süd y3
West y4

Tatsächlich kann man mit pd.merge() nämlich auch Dataframes mergen, die Indizes als
gemeinsame Spalte haben. Dazu muss man left_index=True und right_index=True
setzen anstatt auf spezifische Spaltennamen zu referenzieren. Anstatt dies zu tun kann
aber eben auch pd.join() genutzt werden.

df_x.merge(
 df_y,

13

14 / 15

 left_index=True,
 right_index=True,
 how='outer'
)

 x y
Nord x1 y1
Ost x2 y2
Süd NaN y3
West x3 y4

df_x.join(df_y, how='outer')

#

 x y
Nord x1 y1
Ost x2 y2
Süd NaN y3
West x3 y4

 Weitere Ressourcen

• How to combine DataFrames in Pandas | Merge, Join, Concat, & Append

Übungen
Bringe die Informationen aus den folgenden beiden Datensätzen so zusammen, dass
die Start_Saison und Tore in einer gemeinsamen Tabelle stehen und ausschließlich die
Spieler, die in beiden Datensätzen vorkommen, angezeigt werden.

df1 = pd.DataFrame({
 'Start_Saison': [2008, 2011, 2008, 2014, 2010, 2021],
 'Vorname': ['Thomas', 'Manuel', 'Toni', 'Toni', 'David', 'David'],
 'Nachname': ['Müller', 'Neuer', 'Kroos', 'Kroos', 'Alaba', 'Alaba'],
 'Verein': ['Bayern', 'Bayern', 'Bayern', 'Madrid', 'Bayern', 'Madrid']
})

df2 = pd.DataFrame({
 'Verein': ['Bayern', 'Bayern', 'Madrid', 'Bayern', 'Madrid'],

14

https://youtu.be/wzN1UyfRSWI?si=wT33VyQsXXgtabkx

15 / 15

 'Vorname': ['Thomas', 'Toni', 'Toni', 'David', 'David'],
 'Nachname': ['Müller', 'Kroos', 'Kroos', 'Alaba', 'Alaba'],
 'Tore': [149, 13, 22, 22, 3]
})

• (A) Geschafft

15

	Concat
	Merge/Join
	Inner Join
	Left Join
	Right Join
	Outer Join
	ID-Spalten mit unterschiedlichen Namen
	Mehrere gemeinsame Spalten
	join() vs. merge()

	Übungen

