
1 / 4

Datenexport
by Woche 15

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns

In diesem Kapitel wollen wir uns vor allem mit dem Export von Daten beschäftigen, aber
auch noch etwas mehr zum Import lernen. Tatsächlich wurde in Kapitel 6.2 ja nur erklärt
wie wir Abbildungen, aber keine Daten exportieren können. Das wollen wir nun
nachholen.

CSV-Dateien
Wie schon in Kapitel 5.3 zum Import von Daten wollen wir mit dem ggf. populärsten
Format für den Datenaustausch beginnen: CSV-Dateien. Für den Import nutzen wir die
Pandas Funktion pd.read_csv(). Für den Export gibt es die Methode to_csv() für den
entsprechenden DataFrame.

df = pd.DataFrame({
 'Spalte_A': ['foo', 'bar', 'foo', pd.NA, 'foo', 'bar', 'foo', 'foo'],
 'Spalte_B': [1, 2, 3, 4, 5, 6, 7, pd.NA],
 'Spalte_C': [1.0, 2.0, 3.0, 4.0, 5.0, pd.NA, 7.0, 8.0]
})

df.to_csv('meinedatei.csv')

Wenn wir in Jupyter Labs oder Jupyter Notebook arbeiten, wird die Datei namens
meinedatei.csv im gleichen Verzeichnis gespeichert, in dem auch das Notebook liegt.
Sie ist außerdem erwartungsgemäß mit Komma als Trennzeichen gespeichert, was
allerdings dazu führt, dass man sie in Excel nicht im gewünschten Format öffnen kann:

1

2 / 4

Das liegt daran, dass Excel in Deutschland standardmäßig ein Semikolon als
Trennzeichen erwartet, was wiederum daran liegt, dass in Deutschland das Komma (und
nicht ein Punkt) als Dezimaltrennzeichen verwendet wird. Das können wir aber auch in
Pandas einstellen:

df.to_csv('meinedatei2.csv', sep=';')

Die Datei meinedatei2.csv wird dann mit einem Semikolon als Trennzeichen gespeichert
und kann gut in Excel geöffnet werden.

Außerdem könnten folgende Argumente für to_csv() interessant sein:

• index: Standardmäßig wird der Index des DataFrames mit exportiert, aber in einem
Fall wie diesem ist der Index des DataFrames nicht besonders wichtig, sondern eher
störend, sodass man ihn mit dem Argument index=False auch weglassen kann.

• header: Standardmäßig wird auch die Kopfzeile, also die Spaltennamen mit exportiert.
Falls dies mal nicht gewünscht sein sollte lässt sich auch das mit header=False
abstellen.

2

3 / 4

• decimal: Das Dezimaltrennzeichen ist standardmäßig ein Punkt (decimal='.'), kann
aber auch auf ein Komma geändert werden (decimal=',').

• na_rep: Standardmäßig werden fehlende Werte so exportiert, dass sie als leere Zellen
dargestellt werden. Manchmal kann es aber auch gewünscht sein, dass Fehlwerte als
ein bestimmter Wert dargestellt werden, z.B. als String NA oder gar als -9999. Das lässt
sich mit na_rep='NA' bzw. na_rep='-9999' einstellen.

Alle weiteren Argumente können in der Dokumentation nachgelesen werden.

Excel-Dateien
Auch Excel-Dateien lassen sich mit Pandas exportieren mittels der Methode to_excel().
Hier gilt es allerdings zu unterscheiden zwischen den zwei unterschiedlich komplexen
Fällen ob man nur eine einzelne Tabelle oder mehrere Tabellen in dieselbe Datei
exportieren möchte.

Eine Tabelle in eine Datei
Will man - wie auch bei .to_csv() - nur eine Tabelle in eine Datei exportieren, so ist das
sehr einfach und man braucht nicht mal unbedingt den Tabellenblattnamen anzugeben,
man kann es aber tun:

df.to_excel('meinedatei1.xlsx')

df.to_excel('meinedatei2.xlsx', sheet_name='MeinBlatt')

Auch hier gibt es wieder Argumente wie index, header, na_rep. Außerdem gibt es noch
die Argumente startrow und startcol, mit denen festgelegt werden kann ab welcher
Zeile bzw. Spalte die Daten geschrieben werden sollen. Dies ermöglicht es z.B. mehrere
Tabellen in ein Tabellenblatt zu schreiben, was zumindest für Präsentationen oder
Berichte interessant sein könnte.

3

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_csv.html

4 / 4

Mehrere Tabellen in eine Datei
Noch interessanter ist jedoch die Möglichkeit gleich mehrere Tabellen/Ergebnisse auf
mehrere Tabellenblätter derselben Excel-Datei zu schreiben. Dafür muss ein
sogenanntes ExcelWriter Objekt erstellt werden, welches dann die einzelnen
Tabellenblätter schreibt. Zunächst benötigen wir allerdings eine zweite Tabelle, die wir
exportieren können:

df2 = pd.DataFrame({
 'Spalte_D': ['foo', 'bar', 'foo', pd.NA],
 'Spalte_E': [5, 6, 7, pd.NA],
 'Spalte_F': [5.0, pd.NA, 7.0, 8.0]
})

Nun erstellen wir das ExcelWriter Objekt und schreiben die beiden Tabellen in die Datei:

with pd.ExcelWriter('meinedatei3.xlsx') as writer:
 df.to_excel(writer, sheet_name='MeineTabelle1')
 df2.to_excel(writer, sheet_name='MeineTabelle2')

 Weitere Ressourcen

• Export Pandas DataFrames to new & existing Excel workbook Ab 2:15 ist es
optional, weil über Kursinhalt hinaus

4

https://youtu.be/DroafWQXqDw?si=D-jrItadLL-1EMjc

	CSV-Dateien
	Excel-Dateien
	Eine Tabelle in eine Datei
	Mehrere Tabellen in eine Datei

